File size: 22,849 Bytes
02367e1
79297dc
 
 
 
 
 
 
 
 
 
e63d35a
79297dc
 
e63d35a
 
 
79297dc
 
e63d35a
79297dc
e63d35a
79297dc
 
e63d35a
 
79297dc
 
 
 
 
 
566a951
79297dc
 
 
 
 
 
 
 
 
 
 
e63d35a
79297dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
566a951
 
 
79297dc
 
 
 
 
 
566a951
 
 
79297dc
 
 
 
 
 
566a951
 
 
79297dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
566a951
 
 
 
 
 
79297dc
 
 
 
 
 
566a951
 
 
79297dc
 
 
 
 
 
566a951
 
 
79297dc
 
 
566a951
 
 
 
 
79297dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
566a951
 
 
79297dc
 
 
 
 
 
566a951
 
 
79297dc
 
 
 
 
 
566a951
 
 
79297dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
566a951
 
 
 
 
 
79297dc
 
 
 
 
 
566a951
 
 
79297dc
 
 
 
 
 
566a951
 
 
79297dc
 
 
566a951
 
 
 
 
79297dc
 
 
 
 
 
 
 
 
566a951
 
 
79297dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
566a951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79297dc
 
 
566a951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79297dc
 
566a951
 
 
79297dc
 
 
566a951
79297dc
 
566a951
 
 
79297dc
 
 
566a951
 
 
 
 
79297dc
 
 
 
 
 
 
 
 
566a951
 
 
79297dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
566a951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79297dc
 
 
566a951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79297dc
 
566a951
 
 
79297dc
 
 
566a951
79297dc
 
566a951
 
 
79297dc
 
 
566a951
 
 
 
 
79297dc
 
 
 
02367e1
 
79297dc
 
a5d8f0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79297dc
 
 
 
 
 
 
 
 
 
 
 
 
566a951
79297dc
 
 
 
 
 
a5d8f0d
 
 
 
566a951
 
a5d8f0d
566a951
 
a5d8f0d
566a951
a5d8f0d
 
 
 
 
 
 
 
 
 
 
566a951
 
a5d8f0d
 
566a951
a5d8f0d
 
566a951
a5d8f0d
566a951
79297dc
 
a5d8f0d
 
79297dc
a5d8f0d
 
 
 
566a951
a5d8f0d
 
566a951
a5d8f0d
 
566a951
a5d8f0d
 
 
 
 
 
 
 
 
 
566a951
 
a5d8f0d
 
566a951
a5d8f0d
 
566a951
a5d8f0d
566a951
79297dc
a5d8f0d
79297dc
 
 
a5d8f0d
 
79297dc
a5d8f0d
 
 
 
566a951
79297dc
 
 
a5d8f0d
79297dc
a5d8f0d
 
 
 
 
 
 
 
79297dc
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
---
annotations_creators:
- no-annotation
language_creators:
- crowdsourced
language:
- ace
- ban
- bjn
- bug
- gor
- km
- id
- jv
- lo
- mad
- mnw
- min
- ms
- my
- nia
- shn
- su
- tet
- th
- vi
license:
- cc-by-sa-3.0
- gfdl
multilinguality:
- multilingual
source_datasets:
- Wikipedia
task_categories:
- text-generation
- fill-mask
task_ids:
- language-modeling
- masked-language-modeling
pretty_name: Wikipedia Archive for SEA Languages
tags:
- Wikipedia
- Southeast Asia (SEA)
- Dialect
- Banyumasan Dialect of Javanese (Ngapak)
- SEA-related Languages
- SEA Local Languages
dataset_info:
- config_name: seawiki_all
  features:
  - name: url
    dtype: string
  - name: title
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: ace
    num_bytes: 4952102
    num_examples: 13003
  - name: ban
    num_bytes: 18198909
    num_examples: 20987
  - name: bcl
    num_bytes: 20258642
    num_examples: 15743
  - name: bjn
    num_bytes: 6792259
    num_examples: 10519
  - name: bug
    num_bytes: 3298561
    num_examples: 15880
  - name: cbk_zam
    num_bytes: 2033238
    num_examples: 3285
  - name: gor
    num_bytes: 6239133
    num_examples: 15359
  - name: id
    num_bytes: 1118834498
    num_examples: 665622
  - name: ilo
    num_bytes: 16719139
    num_examples: 15371
  - name: jv
    num_bytes: 72101470
    num_examples: 73380
  - name: km
    num_bytes: 103146669
    num_examples: 11994
  - name: lo
    num_bytes: 15240262
    num_examples: 5014
  - name: mad
    num_bytes: 1612542
    num_examples: 1192
  - name: map_bms
    num_bytes: 5221506
    num_examples: 13580
  - name: min
    num_bytes: 116824020
    num_examples: 227143
  - name: mnw
    num_bytes: 47321734
    num_examples: 3296
  - name: ms
    num_bytes: 419662356
    num_examples: 368628
  - name: my
    num_bytes: 313370839
    num_examples: 109310
  - name: nia
    num_bytes: 2153274
    num_examples: 1714
  - name: pag
    num_bytes: 1370162
    num_examples: 2665
  - name: pam
    num_bytes: 8218370
    num_examples: 9006
  - name: shn
    num_bytes: 33754296
    num_examples: 13945
  - name: su
    num_bytes: 47516268
    num_examples: 61555
  - name: ta
    num_bytes: 809156746
    num_examples: 160651
  - name: tet
    num_bytes: 1454499
    num_examples: 1468
  - name: th
    num_bytes: 1012930269
    num_examples: 159719
  - name: tl
    num_bytes: 85356818
    num_examples: 45341
  - name: vi
    num_bytes: 1603057632
    num_examples: 1288680
  - name: war
    num_bytes: 454304567
    num_examples: 1266394
  download_size: 6358317628
  dataset_size: 6351100780
- config_name: seawiki_dedup_all
  features:
  - name: url
    dtype: string
  - name: title
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: ace
    num_bytes: 4944916
    num_examples: 12979
  - name: ban
    num_bytes: 18025267
    num_examples: 20611
  - name: bcl
    num_bytes: 19977232
    num_examples: 14079
  - name: bjn
    num_bytes: 6786207
    num_examples: 10503
  - name: bug
    num_bytes: 2182435
    num_examples: 9969
  - name: cbk_zam
    num_bytes: 1579651
    num_examples: 2242
  - name: gor
    num_bytes: 6217480
    num_examples: 15290
  - name: id
    num_bytes: 1117891512
    num_examples: 662443
  - name: ilo
    num_bytes: 16719001
    num_examples: 15369
  - name: jv
    num_bytes: 71997517
    num_examples: 73080
  - name: km
    num_bytes: 102698901
    num_examples: 11466
  - name: lo
    num_bytes: 14908444
    num_examples: 4897
  - name: mad
    num_bytes: 1612542
    num_examples: 1192
  - name: map_bms
    num_bytes: 5067489
    num_examples: 11839
  - name: min
    num_bytes: 116721269
    num_examples: 225972
  - name: mnw
    num_bytes: 47243333
    num_examples: 3271
  - name: ms
    num_bytes: 414783365
    num_examples: 348045
  - name: my
    num_bytes: 312990457
    num_examples: 108819
  - name: nia
    num_bytes: 2153274
    num_examples: 1714
  - name: pag
    num_bytes: 764869
    num_examples: 1108
  - name: pam
    num_bytes: 8205723
    num_examples: 8932
  - name: shn
    num_bytes: 33616591
    num_examples: 13662
  - name: su
    num_bytes: 47512744
    num_examples: 61529
  - name: ta
    num_bytes: 809061339
    num_examples: 160580
  - name: tet
    num_bytes: 1452151
    num_examples: 1464
  - name: th
    num_bytes: 1012868861
    num_examples: 159666
  - name: tl
    num_bytes: 85286023
    num_examples: 45121
  - name: vi
    num_bytes: 1602828123
    num_examples: 1287910
  - name: war
    num_bytes: 454266479
    num_examples: 1266204
  download_size: 6347597222
  dataset_size: 6340363195
- config_name: seawiki_with_countries_all
  features:
  - name: url
    dtype: string
  - name: title
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: brn_ms
    num_bytes: 419662356
    num_examples: 368628
  - name: idn_ace
    num_bytes: 4952102
    num_examples: 13003
  - name: idn_ban
    num_bytes: 18198909
    num_examples: 20987
  - name: idn_bjn
    num_bytes: 6792259
    num_examples: 10519
  - name: idn_bug
    num_bytes: 3298561
    num_examples: 15880
  - name: idn_gor
    num_bytes: 6239133
    num_examples: 15359
  - name: idn_id
    num_bytes: 1118834498
    num_examples: 665622
  - name: idn_jv
    num_bytes: 72101470
    num_examples: 73380
  - name: idn_mad
    num_bytes: 1612542
    num_examples: 1192
  - name: idn_map_bms
    num_bytes: 5221506
    num_examples: 13580
  - name: idn_min
    num_bytes: 116824020
    num_examples: 227143
  - name: idn_ms
    num_bytes: 419662356
    num_examples: 368628
  - name: idn_nia
    num_bytes: 2153274
    num_examples: 1714
  - name: idn_su
    num_bytes: 47516268
    num_examples: 61555
  - name: idn_tet
    num_bytes: 1454499
    num_examples: 1468
  - name: khm_km
    num_bytes: 103146669
    num_examples: 11994
  - name: lao_lo
    num_bytes: 15240262
    num_examples: 5014
  - name: mmr_my
    num_bytes: 313370839
    num_examples: 109310
  - name: mmr_shn
    num_bytes: 33754296
    num_examples: 13945
  - name: mmr_mnw
    num_bytes: 47321734
    num_examples: 3296
  - name: mys_ms
    num_bytes: 419662356
    num_examples: 368628
  - name: mys_ta
    num_bytes: 809156746
    num_examples: 160651
  - name: phl_war
    num_bytes: 454304567
    num_examples: 1266394
  - name: phl_tl
    num_bytes: 85356818
    num_examples: 45341
  - name: phl_ilo
    num_bytes: 16719139
    num_examples: 15371
  - name: phl_bcl
    num_bytes: 20258642
    num_examples: 15743
  - name: phl_pam
    num_bytes: 8218370
    num_examples: 9006
  - name: phl_cbk_zam
    num_bytes: 2033238
    num_examples: 3285
  - name: phl_pag
    num_bytes: 1370162
    num_examples: 2665
  - name: sgp_ms
    num_bytes: 419662356
    num_examples: 368628
  - name: sgp_ta
    num_bytes: 809156746
    num_examples: 160651
  - name: tha_th
    num_bytes: 1012930269
    num_examples: 159719
  - name: tha_mnw
    num_bytes: 47321734
    num_examples: 3296
  - name: tha_shn
    num_bytes: 33754296
    num_examples: 13945
  - name: tls_tet
    num_bytes: 1454499
    num_examples: 1468
  - name: vnm_vi
    num_bytes: 1603057632
    num_examples: 1288680
  download_size: 6358317628
  dataset_size: 8501775123
- config_name: seawiki_with_countries_dedup_all
  features:
  - name: url
    dtype: string
  - name: title
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: brn_ms
    num_bytes: 414783365
    num_examples: 348045
  - name: idn_ace
    num_bytes: 4944916
    num_examples: 12979
  - name: idn_ban
    num_bytes: 18025267
    num_examples: 20611
  - name: idn_bjn
    num_bytes: 6786207
    num_examples: 10503
  - name: idn_bug
    num_bytes: 2182435
    num_examples: 9969
  - name: idn_gor
    num_bytes: 6217480
    num_examples: 15290
  - name: idn_id
    num_bytes: 1117891512
    num_examples: 662443
  - name: idn_jv
    num_bytes: 71997517
    num_examples: 73080
  - name: idn_mad
    num_bytes: 1612542
    num_examples: 1192
  - name: idn_map_bms
    num_bytes: 5067489
    num_examples: 11839
  - name: idn_min
    num_bytes: 116721269
    num_examples: 225972
  - name: idn_ms
    num_bytes: 414783365
    num_examples: 348045
  - name: idn_nia
    num_bytes: 2153274
    num_examples: 1714
  - name: idn_su
    num_bytes: 47512744
    num_examples: 61529
  - name: idn_tet
    num_bytes: 1452151
    num_examples: 1464
  - name: khm_km
    num_bytes: 102698901
    num_examples: 11466
  - name: lao_lo
    num_bytes: 14908444
    num_examples: 4897
  - name: mmr_my
    num_bytes: 312990457
    num_examples: 108819
  - name: mmr_shn
    num_bytes: 33616591
    num_examples: 13662
  - name: mmr_mnw
    num_bytes: 47243333
    num_examples: 3271
  - name: mys_ms
    num_bytes: 414783365
    num_examples: 348045
  - name: mys_ta
    num_bytes: 809061339
    num_examples: 160580
  - name: phl_war
    num_bytes: 454266479
    num_examples: 1266204
  - name: phl_tl
    num_bytes: 85286023
    num_examples: 45121
  - name: phl_ilo
    num_bytes: 16719001
    num_examples: 15369
  - name: phl_bcl
    num_bytes: 19977232
    num_examples: 14079
  - name: phl_pam
    num_bytes: 8205723
    num_examples: 8932
  - name: phl_cbk_zam
    num_bytes: 1579651
    num_examples: 2242
  - name: phl_pag
    num_bytes: 764869
    num_examples: 1108
  - name: sgp_ms
    num_bytes: 414783365
    num_examples: 348045
  - name: sgp_ta
    num_bytes: 809061339
    num_examples: 160580
  - name: tha_th
    num_bytes: 1012868861
    num_examples: 159666
  - name: tha_mnw
    num_bytes: 47243333
    num_examples: 3271
  - name: tha_shn
    num_bytes: 33616591
    num_examples: 13662
  - name: tls_tet
    num_bytes: 1452151
    num_examples: 1464
  - name: vnm_vi
    num_bytes: 1602828123
    num_examples: 1287910
  download_size: 6347597222
  dataset_size: 8476086704
---

# **SEA Wikipedia Data Repository**
---
license: cc-by-sa-3.0
---
Welcome to SEA Wikipedia Data Repository. The datasets are extracted from [Wikipedia HF](https://huggingface.co/datasets/wikipedia) and processed using the scripts available in this repository for reproducibility purpose.

# Getting Started #
### To read the datasets directly ###
Use one of the following code chunks to load it from HuggingFace Hub:
You can refer to the 2nd args of ```config name``` using the following script
```
dataset = load_dataset(
  "sabilmakbar/sea_wiki",
  "seawiki_dedup_all" # a config name, can be "seawiki_dedup_all" or "seawiki_with_countries_all", or "seawiki_with_countries_dedup_all" , defaults to "seawiki_dedup_all"
)
```
Or you can provide both ```lang``` and ```date_stamp``` (or just lang only by assuming the ```date_stamp``` will take the newest one)
```
dataset = load_dataset(
  "sabilmakbar/sea_wiki",
  lang = "id", # see README for complete lang choices
  date_stamp="20230901"
)
```
Or you can provide a ```country``` params with similar fashion to ```lang``` args (providing both ```country``` and ```lang``` will prioritize the ```lang``` kwarg)
```
dataset = load_dataset(
  "sabilmakbar/sea_wiki",
  lang = "id", # see the splits for complete lang choices
  date_stamp="20230901"
)
```

# **FAQS**
### What are the available languages provided in dataset and from which country?
You may check the following tables to understand the current coverage of this dataset (languages, countries, data size & volume).

#### 1. Table of Countries and its Country Code
| Country Code | Country Name | Wiki Info |
| :---: | :---: | :---: |
| brn | Brunei | [Wiki Link](https://en.wikipedia.org/wiki/Brunei) |
| idn | Indonesia | [Wiki Link](https://en.wikipedia.org/wiki/Indonesia) |
| khm | Cambodia | [Wiki Link](https://en.wikipedia.org/wiki/Cambodia) |
| lao | Laos | [Wiki Link](https://en.wikipedia.org/wiki/Laos) |
| mmr | Myanmar | [Wiki Link](https://en.wikipedia.org/wiki/Myanmar) |
| mys | Malaysia | [Wiki Link](https://en.wikipedia.org/wiki/Malaysia) |
| phl | Philippines | [Wiki Link](https://en.wikipedia.org/wiki/Philippines) |
| sgp | Singapore | [Wiki Link](https://en.wikipedia.org/wiki/Singapore) |
| tha | Thailand | [Wiki Link](https://en.wikipedia.org/wiki/Thailand) |
| tls | East Timor | [Wiki Link](https://en.wikipedia.org/wiki/East_Timor) |
| vnm | Vietnam | [Wiki Link](https://en.wikipedia.org/wiki/Vietnam) |

#### 2. Table of Languages and Countries of its speakers
| Lang Code | Lang Name | Country Codes Spoken | Wiki Info | Total Data | Total Size (MiB rounded) |
| :---: | :---: | :---: | :--- | ---: | ---: |
| ace | Acehnese | idn | [Wiki Link](https://en.wikipedia.org/wiki/Acehnese_language) | 12904 | 4.64 |
| ban | Balinese | idn | [Wiki Link](https://en.wikipedia.org/wiki/Balinese_language) | 19837 | 16.56 |
| bjn | Banjarese | idn | [Wiki Link](https://en.wikipedia.org/wiki/Banjarese_language) | 10437 | 6.35 |
| bcl | Central Bicolano | phl | [Wiki Link](https://en.wikipedia.org/wiki/Banjarese_language) | 15743 | 19.32 |
| bug | Buginese | idn | [Wiki Link](https://en.wikipedia.org/wiki/Buginese_language) | 9793 | 1.98 |
| ceb | Cebuano | phl | [Wiki Link](https://en.wikipedia.org/wiki/Central_Bicolano_language) | *Not Supported Yet* | *Not Supported Yet* |
| cbk (ISO 639-3) <br> cbk_zam (WikiMedia) | Zamboanga Chavacano/Chavacano | phl | [Wiki Link](https://en.wikipedia.org/wiki/Chavacano) | 3285 | 1.94 |
| gor | Gorontalo | idn | [Wiki Link](https://en.wikipedia.org/wiki/Gorontalo_language) | 14514 | 5.71 |
| ilo | Ilokano | phl | [Wiki Link](https://en.wikipedia.org/wiki/Ilocano_language) | 15371 | 15.94 |
| km | Khmer | khm | [Wiki Link](https://en.wikipedia.org/wiki/Khmer_language) | 11994 | 98.37 |
| id | Indonesian | idn | [Wiki Link](https://en.wikipedia.org/wiki/Indonesian_language) | 654287 | 1049.93 |
| jv | Javanese | idn | [Wiki Link](https://en.wikipedia.org/wiki/Javanese_language) | 72667 | 66.54 |
| lo | Lao | lao | [Wiki Link](https://en.wikipedia.org/wiki/Lao_language) | 5014 | 14.53 |
| mad | Madurese | idn | [Wiki Link](https://en.wikipedia.org/wiki/Madurese_language) | 1192 | 1.54 |
| map_bms | Banyumasan <br>(Dialect of Javanese) | idn | [Wiki Link](https://en.wikipedia.org/wiki/Banyumasan_dialect) | 11832 | 4.83 |
| mnw | Mon | mmr | [Wiki Link](https://en.wikipedia.org/wiki/Mon_language) | 3296 | 45.13 |
| min | Minangkabau | idn | [Wiki Link](https://en.wikipedia.org/wiki/Minangkabau_language) | 225858 | 110.99 |
| ms | Malay | mys, sgp, brn, idn | [Wiki Link](https://en.wikipedia.org/wiki/Malay_language) | 346186 | 391.43 |
| my | Burmese | mmr | [Wiki Link](https://en.wikipedia.org/wiki/Burmese_language) | 109310 | 298.85 |
| nia | Nias | idn | [Wiki Link](https://en.wikipedia.org/wiki/Nias_language) | 1650 | 1.85 |
| pag | Pangasinan | phl | [Wiki Link](https://en.wikipedia.org/wiki/Pangasinan_language) | 2665 | 1.31 |
| pam | Kapampangan | phl | [Wiki Link](https://en.wikipedia.org/wiki/Kapampangan_language) | 9006 | 7.84 |
| shn | Shan | mmr | [Wiki Link](https://en.wikipedia.org/wiki/Shan_language) | 13945 | 32.19 |
| su | Sundanese | idn | [Wiki Link](https://en.wikipedia.org/wiki/Sundanese_language) | 61494 | 45.21 |
| ta | Tamil | mys, sgp | [Wiki Link](https://en.wikipedia.org/wiki/Tamil_language) | 160651 | 0.15 |
| tet | Tetum | tls, idn | [Wiki Link](https://en.wikipedia.org/wiki/Tetum_language) | 1465 | 1.39 |
| th | Thai | tha | [Wiki Link](https://en.wikipedia.org/wiki/Thai_language) | 159719 | 966.00 |
| tl | Tagalog | phl | [Wiki Link](https://en.wikipedia.org/wiki/Tagalog_language) | 45341 | 81.42 |
| vi | Vietnamese | vnm | [Wiki Link](https://en.wikipedia.org/wiki/Vietnamese_language) | 1288680 | 1528.79 |
| war | Waray | phl | [Wiki Link](https://en.wikipedia.org/wiki/Waray_language) | 1266394 | 433.26 |


#### 3. Table of Token Statistics for Covered Languages
The token statistics is generated using ```tiktoken``` using encoder for GPT-4.

| Lang Code | Total Token | Avg Token per Article | Min Token | Max Token | Token Deciles List |
| :---: | ---: | ---: | ---: | ---: | :--- |
| ace | 1,370,829 | 105.61899992295247 | 3 | 9,659 | [38.0, 52.0, 54.0, 69.0, 76.0, 84.0, 90.0, 123.0, 126.0] |
| ban | 5,924,610 | 287.44893503469024 | 5 | 24,364 | [97.0, 144.0, 165.0, 187.0, 209.0, 245.0, 276.0, 315.0, 421.0] |
| bcl | 6,234,838 | 442.8466510405569 | 2 | 54,049 | [55.0, 95.0, 143.0, 179.0, 226.0, 304.0, 419.0, 587.0, 917.2] |
| bjn | 1,935,505 | 184.28115776444827 | 2 | 30,170 | [36.0, 38.0, 39.0, 40.0, 42.0, 51.0, 82.0, 151.0, 367.0] |
| bug | 553,693 | 55.54147858360919 | 1 | 13,951 | [31.0, 42.0, 43.0, 46.0, 48.0, 50.0, 52.0, 55.0, 57.0] |
| cbk_zam | 402,703 | 179.6177520071365 | 2 | 6,494 | [35.0, 41.2, 56.0, 69.0, 90.0, 120.0, 138.0, 155.0, 294.9] |
| gor | 1,575,766 | 103.05860039241334 | 2 | 5,525 | [55.0, 58.0, 60.0, 62.0, 64.0, 66.0, 69.0, 75.0, 96.0] |
| id | 325,411,713 | 491.22975561670967 | 1 | 198,597 | [54.0, 93.0, 123.0, 145.0, 180.0, 226.0, 332.0, 543.0, 1068.0] |
| ilo | 5,593,491 | 363.94632051532307 | 17 | 18,202 | [59.0, 80.0, 91.0, 111.0, 152.0, 213.0, 303.0, 461.0, 856.0] |
| jv | 23,528,314 | 321.95284619594963 | 2 | 342,156 | [48.0, 60.0, 75.0, 88.0, 117.0, 175.0, 270.0, 420.0, 772.0] |
| km | 54,559,721 | 4,758.391854177568 | 1 | 1,110,771 | [160.0, 293.0, 452.0, 693.0, 1032.0, 1609.0, 2644.0, 4745.0, 9607.0] |
| lo | 9,395,636 | 1,918.6514192362672 | 3 | 107,154 | [134.0, 184.2, 285.0, 494.0, 658.0, 894.6, 1258.0, 1971.2, 4153.8] |
| mad | 611,736 | 513.2013422818792 | 14 | 17,093 | [80.1, 110.2, 135.0, 161.0, 194.0, 242.0, 302.7, 531.4, 1167.1] |
| map_bms | 1,307,244 | 110.41844750401216 | 1 | 20,629 | [20.0, 21.0, 22.0, 24.0, 30.0, 35.0, 36.0, 38.0, 111.0] |
| min | 33,114,184 | 146.54109358681606 | 3 | 58,387 | [81.0, 91.0, 96.0, 108.0, 119.0, 135.0, 156.0, 168.0, 170.0] |
| mnw | 31,595,647 | 9,659.3234484867 | 6 | 1,450,765 | [425.0, 601.0, 629.0, 682.0, 763.0, 2103.0, 4255.0, 7724.0, 14517.0] |
| ms | 121,343,673 | 348.64363228892813 | 1 | 68,545 | [32.0, 40.0, 49.0, 63.0, 105.0, 138.0, 216.0, 362.0, 788.0] |
| my | 189,439,447 | 1,740.8673761015998 | 10 | 1,376,658 | [164.0, 269.0, 350.0, 508.0, 559.0, 578.0, 605.0, 892.4, 3369.0] |
| nia | 795,527 | 464.134772462077 | 8 | 18,650 | [59.0, 61.0, 63.0, 65.0, 67.0, 86.0, 239.1, 623.4, 1249.7] |
| pag | 222,366 | 200.6913357400722 | 5 | 10,143 | [31.0, 51.0, 73.0, 110.0, 118.0, 120.0, 127.0, 181.0, 355.8] |
| pam | 2,269,091 | 254.04064039408868 | 1 | 14,912 | [38.0, 56.0, 78.0, 108.0, 121.0, 150.0, 193.0, 289.0, 525.8] |
| shn | 23,125,637 | 1,692.6977748499487 | 2 | 204,094 | [460.0, 480.0, 585.0, 679.0, 715.0, 740.0, 756.0, 780.0, 1580.9] |
| su | 14,710,124 | 239.07627297697022 | 1 | 99,456 | [41.0, 43.0, 45.0, 49.0, 70.0, 146.0, 216.0, 219.0, 419.0] |
| ta | 376,043,508 | 2,341.782961763607 | 15 | 177,054 | [543.0, 700.0, 824.0, 1001.0, 1153.0, 1465.0, 1992.0, 2911.0, 4652.0] |
| tet | 487,016 | 332.6612021857924 | 4 | 24,287 | [30.3, 47.0, 66.9, 101.0, 164.0, 177.0, 187.0, 248.6, 604.4] |
| th | 330,964,733 | 2,072.8566695476807 | 1 | 289,150 | [231.0, 390.0, 546.0, 727.0, 969.0, 1276.0, 1741.0, 2533.0, 4361.0] |
| tl | 27,789,730 | 615.8934864032269 | 7 | 60,728 | [73.0, 116.0, 161.0, 214.0, 281.0, 360.0, 465.0, 666.0, 1136.0] |
| vi | 546,481,258 | 424.3163404275143 | 3 | 246,463 | [46.0, 64.0, 71.0, 80.0, 86.0, 92.0, 120.0, 240.0, 824.0] |
| war | 117,438,315 | 92.74833676090108 | 1 | 25,689 | [60.0, 77.0, 81.0, 84.0, 87.0, 90.0, 94.0, 99.0, 110.0] |`

Some other languages in SEA that are already exists its Wiki Index at Wikimedia might be missing from this list. Any lang update PR is greatly appreciated!

### How does the data being preprocessed? What makes it different from loading it directly from Wikipedia HF?
The data available in here are processed with following flows:
1. Raw data is being deduplicated on ```title``` and ```text``` (text-content from a given article), to remove articles containing boilerplate text (template text that are used usually for unavailable informations or asking for contributions of content in that article), which usually deemed noisy for NLP data.
2. Furthermore, the ```title``` and ```text``` data are being checked for string-matching duplication (duplication of text that are being pre-processed, i.e symbols removed, HTML tags striped, or ASCII-chars/UTF-8 chars validated). You may check this [ ```dedup_raw_wiki_data.py```](https://huggingface.co/datasets/sabilmakbar/sea_wiki/blob/main/dedup_raw_wiki_data.py) script to understand its implementation.

### How do I extract new Wikipedia Dataset of SEA languages?
You may check to the script [_```extract_raw_wiki_data.py```_](https://huggingface.co/datasets/sabilmakbar/sea_wiki/blob/main/extract_raw_wiki_data.py) to understand its implementations, or you can adjust the bash provided in [_```extract_raw_wiki_data_sea.sh```_](https://huggingface.co/datasets/sabilmakbar/sea_wiki/blob/main/extract_raw_wiki_data_sea.sh) to extract it on your own. 

### How do I extract new Wikipedia Dataset of SEA languages?
You may visit this [Wikipedia Dump Index](https://dumps.wikimedia.org/backup-index.html) to check any latest available data and this link [Wikipedia Language Coverage](https://meta.wikimedia.org/wiki/List_of_Wikipedias_by_country) to map into any languages that you're wanting to extract. Please note that this dataset is extensible to any languages of your choice.

### To replicate the whole dataset generation process ###
1. Set-up a new Python/Conda Environment (recommended Python version: 3.9.6 to 3.9.18 or 3.10.0 to 3.10.13) and install the requirements on ```requirements.txt``` use this codebase via ```pip install -r requirements.txt```.

2. Activate the chosen Python/Conda environment which the requirements are being installed.

3. Force install ```multiprocess==0.70.15``` by using ```pip install multiprocess==0.70.15``` to avoid [this issue](https://github.com/huggingface/datasets/issues/5613#issuecomment-1703169594) (there's no other workaround for now)

4. Run this ```sh``` script for extractions from Wikiedia HF using ```sh extract_raw_wiki_data_sea.sh```<br>
This script will run [_```extract_raw_wiki_data.py```_](https://huggingface.co/datasets/sabilmakbar/sea_wiki/blob/main/extract_raw_wiki_data.py) to construct the Wiki Dataset.

5.  Run this ```sh``` script for deduplications from extracted data in Step 4 using ```sh dedup_raw_wiki_data_sea.sh```<br>
This script will run [_```dedup_raw_wiki_data.py```_](https://huggingface.co/datasets/sabilmakbar/sea_wiki/blob/main/dedup_raw_wiki_data.py) to do Wiki Dataset Clenasing. Please note that the cleansing process can be language/dialect specific.

## Citation Info:
```
@ONLINE{wikidump,
    author = "Wikimedia Foundation",
    title  = "Wikimedia Downloads",
    url    = "https://dumps.wikimedia.org"}
@ONLINE{wikipedia-hf,
    title  = "Huggingface Wikipedia Dataset",
    url    = "https://huggingface.co/datasets/wikipedia"}
```