sakshee05 commited on
Commit
777168f
1 Parent(s): 0f7d0c3

Delete alphanumeric-audio-dataset.py

Browse files
Files changed (1) hide show
  1. alphanumeric-audio-dataset.py +0 -75
alphanumeric-audio-dataset.py DELETED
@@ -1,75 +0,0 @@
1
- import os
2
- import pandas as pd
3
- from datasets import Dataset, Audio
4
-
5
- def load_metadata(metadata_path):
6
- """Load the metadata CSV file."""
7
- return pd.read_csv(metadata_path)
8
-
9
- def generate_dataset_dict(metadata, audio_folder):
10
- """
11
- Generate the dataset dictionary by mapping metadata to corresponding audio files.
12
- """
13
- data = {
14
- "file_name_id": [],
15
- "audio": [],
16
- "text": [],
17
- "age": [],
18
- "gender": [],
19
- "nationality": [],
20
- "native_language": [],
21
- "familiarity_with_english": [],
22
- "accent_strength": [],
23
- "difficulties": [],
24
- "recording_machine": [],
25
- }
26
-
27
- for id in metadata['Response_ID'].unique():
28
-
29
- df_subset = metadata[metadata['Response_ID']==id]
30
-
31
- # Collect audio paths for different categories
32
- name_audio_path = df_subset['file_name'].iloc[0]
33
- number_audio_path = df_subset['file_name'].iloc[2]
34
- address_audio_path = df_subset['file_name'].iloc[1]
35
-
36
- row = df_subset.iloc[0]
37
-
38
- # Only include data if all three audio files exist
39
- if name_audio_path and number_audio_path and address_audio_path:
40
- data["file_name_id"].append(id)
41
- data["audio"].append({
42
- "name_audio": name_audio_path,
43
- "number_audio": number_audio_path,
44
- "address_audio": address_audio_path,
45
- })
46
- data["text"].append({
47
- "name": row["Name"],
48
- "number": row["Number"],
49
- "address": row["Address"],
50
- })
51
- data["age"].append(row["Age"])
52
- data["gender"].append(row["Gender"])
53
- data["nationality"].append(row["Nationality"])
54
- data["native_language"].append(row["Native Language"])
55
- data["familiarity_with_english"].append(row["Familiarity with English"])
56
- data["accent_strength"].append(row["Accent Strength (Self reported)"])
57
- data["difficulties"].append(row["Difficulties"])
58
- data["recording_machine"].append(row["Recording Machine"])
59
-
60
- return data
61
-
62
- def load_dataset(metadata_path="metadata.csv", audio_folder="audio_data"):
63
- """
64
- Load the dataset, mapping metadata to audio and other fields.
65
- """
66
- metadata = load_metadata(metadata_path)
67
- dataset_dict = generate_dataset_dict(metadata, audio_folder)
68
-
69
- # Use the Audio feature from the Hugging Face Datasets library
70
- return Dataset.from_dict(dataset_dict).cast_column("audio", Audio())
71
-
72
- if __name__ == "__main__":
73
- # Load the dataset and print a sample
74
- dataset = load_dataset()
75
- print(dataset)