diff --git "a/code/exploratory_data_analysis.ipynb" "b/code/exploratory_data_analysis.ipynb"
new file mode 100644--- /dev/null
+++ "b/code/exploratory_data_analysis.ipynb"
@@ -0,0 +1,550 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Response_ID | \n",
+ " Age | \n",
+ " Gender | \n",
+ " Nationality | \n",
+ " Native Language | \n",
+ " Familiarity with English | \n",
+ " Accent Strength (Self reported) | \n",
+ " Difficulties | \n",
+ " Recording Machine | \n",
+ " Name | \n",
+ " Number | \n",
+ " Address | \n",
+ " Duration (secs) | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " R_1KvCEEGNThnpnzy | \n",
+ " 24.0 | \n",
+ " Female | \n",
+ " Indian | \n",
+ " Marathi | \n",
+ " Educated in English, but not my native language | \n",
+ " 5 | \n",
+ " About half the time | \n",
+ " Phone Recorder | \n",
+ " Saffron Robles | \n",
+ " 8885112931 | \n",
+ " 48 Ridge Road 407 | \n",
+ " 278 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " R_3nAeHdtYMOFbRQJ | \n",
+ " 21.0 | \n",
+ " Female | \n",
+ " Indian | \n",
+ " Hindi | \n",
+ " Educated in English, but not my native language | \n",
+ " 3 | \n",
+ " Sometimes | \n",
+ " Phone Recorder | \n",
+ " Anannya | \n",
+ " 9196856019 | \n",
+ " 7204, McQueen Drive | \n",
+ " 542 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " R_1DN3Yy2ILEefmz8 | \n",
+ " 24.0 | \n",
+ " Female | \n",
+ " Indian | \n",
+ " Hindi | \n",
+ " Educated in English, but not my native language | \n",
+ " 4 | \n",
+ " Sometimes | \n",
+ " Phone Recorder | \n",
+ " Seraphina Balasubramanian | \n",
+ " 43126798 | \n",
+ " 99 Willow Lane 493 | \n",
+ " 292 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " R_1O7z12FZh2bL6ST | \n",
+ " 22.0 | \n",
+ " Male | \n",
+ " American | \n",
+ " English | \n",
+ " Native speaker | \n",
+ " 0 | \n",
+ " Sometimes | \n",
+ " Phone Recorder | \n",
+ " Zane Robles | \n",
+ " 5993415111 | \n",
+ " 34 Elm Street 568 | \n",
+ " 509 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " R_7qeKPomI8VjGOsK | \n",
+ " 29.0 | \n",
+ " Male | \n",
+ " American | \n",
+ " English | \n",
+ " Native speaker | \n",
+ " 2 | \n",
+ " Sometimes | \n",
+ " External Microphone | \n",
+ " Zuri Sutherland | \n",
+ " 2563144191 | \n",
+ " 56 Pine Tree Lane 640 | \n",
+ " 590 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Response_ID Age Gender Nationality Native Language \\\n",
+ "0 R_1KvCEEGNThnpnzy 24.0 Female Indian Marathi \n",
+ "1 R_3nAeHdtYMOFbRQJ 21.0 Female Indian Hindi \n",
+ "2 R_1DN3Yy2ILEefmz8 24.0 Female Indian Hindi \n",
+ "3 R_1O7z12FZh2bL6ST 22.0 Male American English \n",
+ "4 R_7qeKPomI8VjGOsK 29.0 Male American English \n",
+ "\n",
+ " Familiarity with English \\\n",
+ "0 Educated in English, but not my native language \n",
+ "1 Educated in English, but not my native language \n",
+ "2 Educated in English, but not my native language \n",
+ "3 Native speaker \n",
+ "4 Native speaker \n",
+ "\n",
+ " Accent Strength (Self reported) Difficulties Recording Machine \\\n",
+ "0 5 About half the time Phone Recorder \n",
+ "1 3 Sometimes Phone Recorder \n",
+ "2 4 Sometimes Phone Recorder \n",
+ "3 0 Sometimes Phone Recorder \n",
+ "4 2 Sometimes External Microphone \n",
+ "\n",
+ " Name Number Address \\\n",
+ "0 Saffron Robles 8885112931 48 Ridge Road 407 \n",
+ "1 Anannya 9196856019 7204, McQueen Drive \n",
+ "2 Seraphina Balasubramanian 43126798 99 Willow Lane 493 \n",
+ "3 Zane Robles 5993415111 34 Elm Street 568 \n",
+ "4 Zuri Sutherland 2563144191 56 Pine Tree Lane 640 \n",
+ "\n",
+ " Duration (secs) \n",
+ "0 278 \n",
+ "1 542 \n",
+ "2 292 \n",
+ "3 509 \n",
+ "4 590 "
+ ]
+ },
+ "execution_count": 54,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "sns.set(style=\"whitegrid\")\n",
+ "\n",
+ "df = pd.read_csv(\"../metadata.csv\")\n",
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Age | \n",
+ " Accent Strength (Self reported) | \n",
+ " Number | \n",
+ " Duration (secs) | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count | \n",
+ " 69.000000 | \n",
+ " 70.000000 | \n",
+ " 7.000000e+01 | \n",
+ " 70.000000 | \n",
+ "
\n",
+ " \n",
+ " mean | \n",
+ " 24.391304 | \n",
+ " 4.957143 | \n",
+ " 5.122851e+09 | \n",
+ " 354.542857 | \n",
+ "
\n",
+ " \n",
+ " std | \n",
+ " 3.352863 | \n",
+ " 2.481443 | \n",
+ " 3.215596e+09 | \n",
+ " 216.122260 | \n",
+ "
\n",
+ " \n",
+ " min | \n",
+ " 20.000000 | \n",
+ " 0.000000 | \n",
+ " 7.000000e+00 | \n",
+ " 110.000000 | \n",
+ "
\n",
+ " \n",
+ " 25% | \n",
+ " 23.000000 | \n",
+ " 3.000000 | \n",
+ " 2.294663e+09 | \n",
+ " 196.500000 | \n",
+ "
\n",
+ " \n",
+ " 50% | \n",
+ " 24.000000 | \n",
+ " 5.000000 | \n",
+ " 5.214430e+09 | \n",
+ " 285.000000 | \n",
+ "
\n",
+ " \n",
+ " 75% | \n",
+ " 25.000000 | \n",
+ " 7.000000 | \n",
+ " 8.162263e+09 | \n",
+ " 486.750000 | \n",
+ "
\n",
+ " \n",
+ " max | \n",
+ " 39.000000 | \n",
+ " 9.000000 | \n",
+ " 9.898006e+09 | \n",
+ " 984.000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Age Accent Strength (Self reported) Number \\\n",
+ "count 69.000000 70.000000 7.000000e+01 \n",
+ "mean 24.391304 4.957143 5.122851e+09 \n",
+ "std 3.352863 2.481443 3.215596e+09 \n",
+ "min 20.000000 0.000000 7.000000e+00 \n",
+ "25% 23.000000 3.000000 2.294663e+09 \n",
+ "50% 24.000000 5.000000 5.214430e+09 \n",
+ "75% 25.000000 7.000000 8.162263e+09 \n",
+ "max 39.000000 9.000000 9.898006e+09 \n",
+ "\n",
+ " Duration (secs) \n",
+ "count 70.000000 \n",
+ "mean 354.542857 \n",
+ "std 216.122260 \n",
+ "min 110.000000 \n",
+ "25% 196.500000 \n",
+ "50% 285.000000 \n",
+ "75% 486.750000 \n",
+ "max 984.000000 "
+ ]
+ },
+ "execution_count": 55,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAHZCAYAAAB6otiEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBwUlEQVR4nO3dd3xT9f7H8XfSlRQqMuSCk2ULFVr2UlEQgV5FGQ6QpYIMUS8gP1RURAEZAjKqKENQhhYo4uKKiFuZApdeQKHQUhyVKaBNunJ+f3AbCS1SSpuTQ1/Px6OPknO+OeeT8O3JO998z4nNMAxDAAAAgMXYzS4AAAAAKAqCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAHCRCITvtwmEGgCUHgRZAKXK448/rqioKL3xxht+3e/MmTMVFRXl8xMTE6P27dtr4sSJ+v33333aP/nkk2rTpk2ht79nzx517979nO1WrFihqKgo/fTTT0Xaz9959dVXNW/ePO/tvMcMACUl2OwCAMBfTp48qU8//VSRkZFKSEjQAw88IJvN5tcaEhISJJ0auczIyFBSUpLmzJmjzz77TG+//bYqVKggSXr44YfVu3fvQm/3448/1tatW8/Z7uabb1ZCQoIqV65ctAfwN6ZPn65HHnnEe/vuu+/WjTfeWOz7AYA8BFkApcaHH34oSXr66afVp08frV+/Xi1atPBrDfXr1/e5ff3116tly5a67777NHXqVI0dO1aSdPXVV5fI/itUqOANyyWtSpUqqlKlil/2BaB0YmoBgFIjMTFRLVq0UPPmzXXNNdfonXfeyddm3rx5uuWWWxQTE6Nu3brps88+U1RUlDZs2OBts3v3bg0YMEANGzZUw4YNNXjwYB04cKDIdcXExKhdu3ZauXKlXC6XpPwf+f/3v/9Vnz591KhRIzVo0ED333+/tm3bJunUR/jx8fGSpKioKM2cOdP77/j4eHXp0kUxMTGKj4/PN7UgT0JCgm6++WbFxMSoT58+2rlzp3fd2aYInLkvSYqPj/f+u6D7rVq1Sl26dFGDBg10/fXXa9SoUTp+/LjPvm699VZ98cUX6tixo+rWrav27dtr5cqV5/28Arj4EWQBlAp79uxRUlKSOnXqJEnq1KmT1q5dq8OHD3vbxMfHa/LkyYqLi9Orr76q2NhYDRkyxGc7KSkp6tatm44cOaKJEydq3LhxOnDggLp3764jR44Uub7rr79e2dnZSkpKyrfujz/+UL9+/VS+fHnNnDlTL7/8slwul/r27auTJ0/q7rvv1l133SXpVCC9++67vfd97bXX1LFjR82YMUPt27cvcN/p6emKj4/XkCFDNHXqVB0/fly9evXSL7/8Uuj686ZM3HXXXd5/n+nVV1/VsGHDVL9+fc2YMUODBw/W6tWr1atXL7ndbm+7Q4cO6YUXXlDv3r01e/ZsXXnllXriiSe0d+/eQtcDoHRgagGAUiExMVGXXnqpd5Szc+fOmjlzppYvX66BAwcqIyNDc+bMUY8ePTR8+HBJ0g033CCXy+UTzOLj4+V0OrVgwQKVLVtWktSiRQu1bdtWc+fO1RNPPFGk+ipVqiRJPsE6T3Jyso4dO6bevXurYcOGkqQaNWooISFBf/75p89H+GdOXWjcuLEeeOAB7+2CgnJubq5eeeUVxcTESJJiY2PVtm1bLVy4sNCPJ2+/VapUyVeDJB0/flyzZs3SPffco1GjRnmXR0ZGqkePHkpMTFSPHj0kSS6XS+PGjfNO+6hWrZpat26tL7/8UjVr1ixUPQBKB0ZkAVz0srOz9f7776tt27Zyu906ceKEypQpo0aNGmnp0qXyeDzatm2b3G63OnTo4HPf22+/3ef2+vXr1bRpUzkcDuXk5CgnJ0dly5ZV48aN9d1335VI/ddee60qVKiggQMHatSoUVqzZo0qVaqk//u//zvnHNQ6deqcc/tXXXWVN8RK0mWXXab69etr06ZNF1x7nm3btikrKyvf89m4cWNdccUV2rhxo8/y08Nw3mPMyMgotnoAXBwYkQVw0fviiy905MgRLV++XMuXL8+3/uuvv9bJkyclKd+JUBUrVvS5/fvvv2vVqlVatWpVvu1cyElU6enpklRgMC1TpowWL16sWbNm6d///rcSEhLkcDh055136plnnlFoaOhZtxseHn7OfeeNBp+uYsWK+vXXX8/jEfy9vHmwBe2rUqVK3uc/j9Pp9P7bbj815sI1agGciSAL4KKXmJioq666SuPGjfNZbhiGHnnkEb3zzjvq27evJOnIkSOqUaOGt83Ro0d97hMREaGWLVv6fFyfJzi46IfU7777TuHh4bruuusKXF+jRg299NJLys3N1fbt2/Xee+/p7bff1tVXX61+/foVeb+SfE62ynPo0CFvMM+7RFlubq6CgoIkSX/++ed57aNcuXKSTk2dOP35zdvXVVdddd51AwBTCwBc1A4dOqSvv/5at912m5o1a+bz07x5c3Xo0EFffvmlqlatqoiICK1Zs8bn/p988onP7aZNmyo5OVl16tRRvXr1VK9ePdWtW1cLFizId9/C2rVrl9auXauuXbsqLCws3/qPP/5YzZs316FDhxQUFKQGDRpo9OjRuuSSS7wnZOWNWhZFSkqK0tLSvLd//fVXbd26Vc2aNZMk71zgvFFjSfr+++/zbefvaoiNjVVoaKj3Emh5Nm/erF9++cU79xcAzgcjsgAuaitXrlROTo5uu+22Atd36tRJy5Yt04oVK9SvXz/NmDFDTqdTTZs21caNG/X2229L+iukPfzww+rWrZsGDBig7t27KywsTAkJCfr00081Y8aMc9aTd8kswzD0559/KikpSQsWLFC1atX0r3/9q8D7NGzYUB6PR4MHD1b//v1VpkwZ/fvf/9bJkyfVrl07SdIll1wi6dS1cmNjY89rhDMsLEyDBg3S0KFDlZubq+nTp+vSSy9Vnz59JEk33XSTxo8fr1GjRqlv37769ddf9corr6hMmTI+27nkkku0ZcsWbdq0SY0bN/ZZd+mll6p///565ZVXFBISotatW+unn37S9OnTVatWLXXu3LnQ9QJAHoIsgIvaihUrdO211yoyMrLA9Y0aNdKVV16pZcuW6fPPP5dhGEpISNC8efMUGxur4cOHa/z48d65prVr19bixYv18ssva8SIETIMQ5GRkXrllVd0yy23nLOee++91/tvh8Ohq666St27d1e/fv28I59nqly5subOnavp06fr6aeflsvl0rXXXquZM2eqefPmkqR27drpvffe05NPPqm77rpLo0ePLvRzFB0drfbt22v06NE6efKkWrRooZEjR3qnFlSvXl0TJ07UrFmz1L9/f9WsWVNjxozRmDFjfLYzcOBAvfrqq3rooYcKnEP86KOPqlKlSlq0aJESEhJ06aWXqkOHDhoyZEih5vICwJlsBrPnAUA5OTn68MMP1axZM1WtWtW7fPHixRo7dqw2bNjgHfUEAAQGgiwA/M9tt92m0NBQDRo0SOXLl9fu3bs1bdo0tW3bVuPHjze7PADAGQiyAPA/Bw4c0NSpU7VhwwadOHFCl19+ue644w4NGDBAISEhZpcHADgDQRYAAACWxOW3AAAAYEkEWQAAAFgSQRYAAACWVOquI7t161YZhsGJGwAAAAEqOztbNptNDRo0+Nt2pW5E1jAMcX7bxc8wDGVlZfF/jVKB/o7ShP5eOhQ2r5W6Edm8kdh69eqZXAlKUkZGhnbt2qVatWrxjUG46NHfUZrQ30uHpKSkQrUrdSOyAAAAuDgQZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQxUXJZrPJ6XTKZrOZXQoAACghwWYXUBoYhkGg8jOn06no6GizyyiV6O8AAH8hyPqBzWbTd+kZOp6Va3YppYYn1yO32y2HwyF7EB88+Eu50CC1rBJudhkAgFKCIOsnx7NydSzTY3YZpUZubq4yXNkKt4UoKMjsagAAQElgqAoAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEnBZhdw5MgRTZgwQV9//bUyMzPVpEkTPfHEE6pZs6Yk6ZlnntGyZct87nPFFVfos88+M6NcAAAABAjTg+zgwYPl8Xg0e/ZslSlTRtOnT9f999+vTz75RE6nUz/++KMGDhyonj17eu8TFBRkYsUAAAAIBKZOLTh+/LiuuOIKjR07VjExMapZs6YefvhhHTx4UHv27JFhGEpOTlbdunV12WWXeX8qVKhgZtkAAAAIAKaOyJYrV05Tpkzx3j569KgWLFigKlWqqFatWkpLS1NGRoZq1KhhYpUAAAAIRKZPLcjz7LPPaunSpQoNDdWsWbMUHh6u3bt3S5IWLlyor776Sna7Xa1atdLQoUMVERFR5H0ZhqGMjIziKv1v2Ww2OZ1OeXI9ys3N9cs+IXk8Hp/f8A/P/7q4y+WSYRjmFlOKuFwun9/AxYz+XjoYhiGbzXbOdgETZPv06aN7771Xixcv1uDBg7VkyRLt3r1bdrtdlStX1muvvaa0tDRNmjRJe/bs0Ztvvim7vWgzI7Kzs7Vr165ifgQFczqdio6OltvtVoYr2y/7xF/cbrfZJZQq4UaIpHJKSUnhRcYEqampZpcA+A39/eIXGhp6zjY2I8CGTTwej26//XbFxsZq3LhxOn78uMqXL+9d/5///Ef33HOPli5dqtjY2PPeflJSkgzDUK1atYqz7LPKG5H9KOW4jmYyIusvHo9HbrdbDoejyG94cP4qhAXpturlGJH1M5fLpdTUVFWrVk1Op9PscoASRX8vHZKTk2Wz2VSvXr2/bWfqiOzRo0e1bt06tW/fXsHBp0qx2+2qVauWDh48KLvd7hNiJenaa6+VJKWnpxcpyEqnwmV4ePiFFX+e7EF2cbEF/7Pb7Vzlwo/sQafeNPDiYg6n0+n3YxtgFvr7xa0w0wokk69acPjwYQ0bNkzr1q3zLsvOztbOnTtVs2ZNjRgxQvfff7/PfZKSkiTJbyOqAAAACEymBtnIyEi1atVKY8eO1aZNm7R79249+eSTOnHihO6//361b99e69atU3x8vNLS0vTll19q5MiRuv32271fmAAAAIDSyfSTvaZOnaopU6Zo6NChOnnypBo3bqzFixfr8ssv1+WXX65p06Zp9uzZmjNnjiIiItSxY0cNGTLE7LIBAABgMtODbEREhEaPHq3Ro0cXuD4uLk5xcXH+LQoAAAABj9O5AQAAYEkEWQAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACWRJAFAACAJRFkAcDibDabnE6nbDab2aUAgF8Fm10AgIuHI8gmwzAIVH7mdDoVHR1tdhmlEv0dMBdBFkCxCbXbZLPZ9F16ho5n5ZpdTqnhyfXI7XbL4XDIHsQHbf5SLjRILauEm10GUKoRZAEUu+NZuTqW6TG7jFIjNzdXGa5shdtCFBRkdjUA4D+8dQcAAIAlEWQBAABgSaYH2SNHjuj//u//1Lx5czVo0ED9+/fX3r17vet37dqlnj17qn79+mrTpo3eeustE6sFAABAoDA9yA4ePFj79+/X7NmztXz5cjkcDt1///1yuVw6duyYHnjgAV199dVKTEzU4MGDNXnyZCUmJppdNgAAAExm6slex48f1xVXXKEBAwYoMjJSkvTwww/rzjvv1J49e7Ru3TqFhITohRdeUHBwsGrWrOkNvV27djWzdAAAAJjM1BHZcuXKacqUKd4Qe/ToUS1YsEBVqlRRrVq1tHnzZjVt2lTBwX/l7ebNmys1NVWHDx82q2wAAAAEgIC5/Nazzz6rpUuXKjQ0VLNmzVJ4eLjS09O9ITdP5cqVJUm//vqrKlWqVKR9GYahjIyMC665MPK+cceT61FuLtfV9BePx+PzG/7h8Zx6b2x46O/+RH83h+d/XdzlcskwDHOLKUVcLpfPb1ycCvtlIwETZPv06aN7771Xixcv1uDBg7VkyRK53W6Fhob6tAsLC5MkZWZmFnlf2dnZ2rVr1wXVW1h537jjdruV4cr2yz7xF7fbbXYJpUpWmFOS5M7MUkZG0f9GUTT0d/8KN0IklVNKSgqhygSpqalml4ASdmYGLEjABNlatWpJksaNG6f//Oc/WrRokRwOh7Kysnza5QXY8PCif5tKSEiId38lLe/dhMPhULgtxC/7xKmRKe83HdlNP6ex1AgNPdXHHWGhCje4Mr+/0N/N4Qg71cerV6/OiKwfuVwupaamqlq1anI6nWaXgxKSnJxcqHamBtmjR49q3bp1at++vXcerN1uV61atXTw4EFVqVJFBw8e9LlP3u1//OMfRd6vzWa7oCBcFPYgO9+4YwK73a4gnni/yQtRNjv93Qz0d//K+zpgwpQ5nE6n31/L4T+FmVYgmXyy1+HDhzVs2DCtW7fOuyw7O1s7d+5UzZo11aRJE33//fc+c+3Wr1+v6tWrq2LFimaUDAAAgABhapCNjIxUq1atNHbsWG3atEm7d+/Wk08+qRMnTuj+++9X165d9ccff+jpp59WcnKyVqxYoQULFmjAgAFmlg0AAIAAYPpkqqlTp6pFixYaOnSo7r77bv3+++9avHixLr/8clWsWFFz585VSkqKOnfurPj4eI0YMUKdO3c2u2wAAACYzPSTvSIiIjR69GiNHj26wPUxMTFKSEjwb1EAAAAIeKaPyAIAAABFQZAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACWFGx2Ab///rumTp2qL774Qn/88YeioqL0+OOPq3HjxpKkBx54QN99953PfZo2baqFCxeaUS4AAAAChOlBdtiwYTp06JCmTp2qihUrauHCherbt6/effdd1ahRQz/++KNGjx6ttm3beu8TEhJiYsUAAAAIBKYG2f379+vbb7/VkiVL1KhRI0nSs88+q6+//loffPCBevbsqSNHjig2NlaXXXaZmaUCAAAgwJg6R7Z8+fKaPXu26tWr511ms9lks9l04sQJ/fjjj7LZbKpevbqJVQIAACAQmRpkL7nkEt10000KDQ31Llu9erX279+vG2+8Ubt371ZERIReeOEFtWrVSh06dNC0adOUlZVlYtUAAAAIBKbPkT3dli1b9NRTT6ldu3a6+eabNXLkSGVmZiomJkYPPPCAdu3apUmTJumXX37RpEmTirwfwzCUkZFRjJWfnc1mk9PplCfXo9zcXL/sE5LH4/H5Df/weE69NzY89Hd/or+bw/O/Lu5yuWQYhrnFlCIul8vnNy5OhmHIZrOds53NCJC/vk8//VTDhw9Xw4YNNWvWLIWFhSknJ0d//vmnypUr5223atUqDR06VN9++60qVap03vtJSkry64iu0+lUdHS0Enf9psOubL/tFzBDrfJO3VK9olb8eEiH/sw0uxygRFVyhqhrnX9o586dhCqgBISGhvpMPy1IQIzILlq0SOPGjVOHDh00ceJE71SD4OBgnxArSddee60kKT09vUhBVjp11YNatWpdWNGFlPduwuFwKNzG1Rb8xePxyO12y+FwyG7ncsn+Ehp6qo87wkIVbgSZXE3pQX83hyPsVB+vXr06I7J+5HK5lJqaqmrVqsnpdJpdDkpIcnJyodqZHmSXLFmiMWPGqFevXnr66ad9hpF79eqlK6+8UuPHj/cuS0pKUkhIiKpVq1bkfdpsNoWHh19I2efNHmRXEK/rfme32xXEE+83eSHKZqe/m4H+7l/2oFP9nTBlDqfT6ffXcvhPYaYVSCYH2ZSUFL344ou69dZbNWDAAB0+fNi7zuFwqH379nrxxRcVExOjG264QUlJSZo0aZL69u2rsmXLmlg5AAAAzGZqkF29erWys7O1Zs0arVmzxmdd586dNWHCBNlsNi1cuFAvvviiLrvsMt1///3q37+/SRUDAAAgUJgaZAcOHKiBAwf+bZsePXqoR48efqoIAAAAVsFZAQAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJJKJMimp6eXxGYBAAAAryIF2Tp16mj79u0Frtu8ebPi4uIuqCgAAADgXIIL2/CNN95QRkaGJMkwDC1btkxfffVVvnZbt25VaGho8VUIAAAAFKDQQTYzM1Px8fGSJJvNpmXLluVrY7fbFRERoUGDBhVfhQAAAEABCh1kBw0a5A2otWvX1tKlSxUTE1NihQEAAAB/p9BB9nQ//PBDcdcBAAAAnJciBVlJ+vbbb/X555/L5XLJ4/H4rLPZbHrxxRcvuDgAAADgbIoUZN944w1NmjRJYWFhqlChgmw2m8/6M28DAAAAxa1IQXbRokXq2LGjxo0bxxUKAAAAYIoiXUf28OHDuuuuuwixAAAAME2Rgmx0dLT27NlTLAX8/vvvGjVqlFq1aqWGDRuqe/fu2rx5s3f9unXr1KVLF8XGxqpDhw766KOPimW/AAAAsLYiTS0YOXKkhgwZovDwcMXGxsrpdOZrc/nllxdqW8OGDdOhQ4c0depUVaxYUQsXLlTfvn317rvvyjAMDRgwQA888IBeeuklffHFFxoxYoQqVKigFi1aFKV0AAAAXCSKFGS7d+8uj8ejkSNHnvXErl27dp1zO/v379e3336rJUuWqFGjRpKkZ599Vl9//bU++OADHTlyRFFRURo6dKgkqWbNmtq5c6fmzp1LkAUAACjlihRkx4wZUyxXJihfvrxmz56tevXqeZfZbDbZbDadOHFCmzdvVtu2bX3u07x5c40bN06GYXB1BAAAgFKsSEG2S5cuxbLzSy65RDfddJPPstWrV2v//v0aOXKk3n33XVWpUsVnfeXKleVyuXTs2DFVqFChSPs1DEMZGRlFrvt82Gw2OZ1OeXI9ys3N9cs+Ie+1jc+8xjFKlsdzatq94aG/+xP93Rye/3Vxl8slwzDMLaYUcblcPr9xcSrsgGWRguymTZvO2aZJkybnvd0tW7boqaeeUrt27XTzzTfL7XbnuzJC3u2srKzz3n6e7OzsQk19KA5Op1PR0dFyu93KcGX7ZZ/4i9vtNruEUiUr7NR8eXdmljIyMk2upvShv/tXuBEiqZxSUlIIVSZITU01uwSUsMJcHatIQbZXr16y2Ww+70DPTM3nGxQ//fRTDR8+XA0bNtTkyZMlSWFhYfkCa97tgk4wK6yQkBDVqlWryPc/H3nPi8PhULgtxC/7xKmRKbfbLYfDIbu9SBfnQBGEhp7q446wUIUbQSZXU3rQ383hCDvVx6tXr86IrB+5XC6lpqaqWrVqF5QFENiSk5ML1a5IQfatt97KtywjI0ObN2/We++9p5kzZ57X9hYtWqRx48apQ4cOmjhxojeBV61aVQcPHvRpe/DgQYWHhysiIqIopUs6FS7Dw8OLfP+isAfZFcTrut/Z7XYF8cT7TV6Istnp72agv/uXPehUfydMmcPpdPr9tRz+U9jzoIoUZJs2bVrg8ptvvlnh4eGaNWuWXn/99UJta8mSJRozZox69eqlp59+2qfwxo0ba+PGjT7t169fr4YNGzLqAAAAUMoVexosKHyeTUpKil588UXdeuutGjBggA4fPqxDhw7p0KFDOnnypHr16qXt27dr8uTJ2rt3r9544w19/PHH6tevX3GXDQAAAIsp0ojs3/nss89UpkyZQrVdvXq1srOztWbNGq1Zs8ZnXefOnTVhwgS9+uqreumll/Tmm2/qyiuv1EsvvcQ1ZAEAAFC0INu7d+98yzwej9LT0/Xzzz/roYceKtR2Bg4cqIEDB/5tm1atWqlVq1ZFKRMAAAAXsSIF2YLOzrTb7YqMjNSAAQPUtWvXCy4MAAAA+DtFCrILFy4s7joAAACA83JBc2S/+uorbdy4USdOnFCFChXUqFEj3XjjjcVVGwAAAHBWRQqyWVlZevjhh/XNN98oKChI5cuX17Fjx/T666+refPmev311wv1bQwAAABAURXp8lszZ87U999/r0mTJmn79u365ptv9J///Efjx4/Xtm3bNGvWrOKuEwAAAPBRpCD74Ycf6pFHHtEdd9zh/RaZ4OBgderUSY888og++OCDYi0SAAAAOFORguzRo0cVHR1d4Lro6Gj99ttvF1QUAAAAcC5FCrJXX321vv/++wLXbdq0SVWrVr2gogAAAIBzKdLJXt26ddOECRPkcDh02223qVKlSjp8+LA+/PBDzZkzR4888khx1wkAAAD4KFKQ7d69u3bu3KnJkydrypQp3uWGYahz587q379/sRUIAAAAFKTIl98aN26cHnzwQW3cuFHHjx+XzWZT27ZtVbNmzeKuEQAAAMjnvObI/vjjj+ratavmz58vSapZs6a6d++u++67T9OnT9ewYcOUkpJSIoUCAAAApyt0kP3pp5/Uu3dvHT58WNWrV/dZFxISohEjRuj333/Xfffdx1ULAAAAUOIKHWRnz56tSy+9VO+++646dOjgs87pdOr+++/X8uXLFRYWptdff73YCwUAAABOV+ggu27dOvXr108VKlQ4a5vLLrtMDz74oL799ttiKQ4AAAA4m0IH2YMHD6patWrnbBcZGan09PQLqQkAAAA4p0IH2QoVKujgwYPnbHfs2DGVK1fugooCAAAAzqXQQbZJkyZasWLFOdutXLnyrF9fCwAAABSXQgfZXr16acOGDZowYYIyMzPzrc/KytKkSZP01VdfqUePHsVaJAAAAHCmQn8hQr169fTUU0/pxRdf1HvvvacWLVroyiuvVG5urn755Rdt2LBBx44d07/+9S/deOONJVkzAAAAcH7f7NWjRw/Vrl1b8+bN09q1a70js2XKlNENN9ygBx98ULGxsSVSKAAAAHC68/6K2kaNGqlRo0aSpKNHjyo4OFiXXHJJsRcGAAAA/J3zDrKn+7trygIAAAAlqdAnewEAAACBhCALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASwqoIPv666+rV69ePsueeeYZRUVF+fy0adPGpAoBAAAQKILNLiDP4sWLNW3aNDVu3Nhn+Y8//qiBAweqZ8+e3mVBQUH+Lg8AAAABxvQg+9tvv+m5557Thg0bVK1aNZ91hmEoOTlZ/fv312WXXWZOgQAAAAhIpk8t2LFjh0JCQvT+++8rNjbWZ11aWpoyMjJUo0YNk6oDAABAoDJ9RLZNmzZnnfO6e/duSdLChQv11VdfyW63q1WrVho6dKgiIiL8WSYAAAACjOlB9u/s3r1bdrtdlStX1muvvaa0tDRNmjRJe/bs0Ztvvim7vWgDyoZhKCMjo5irLZjNZpPT6ZQn16Pc3Fy/7BOSx+Px+Q3/8HhO/U0aHvq7P9HfzeH5Xxd3uVwyDMPcYkoRl8vl8xsXJ8MwZLPZztkuoIPsoEGDdN9996l8+fKSpMjISF122WW65557lJSUlG8qQmFlZ2dr165dxVnqWTmdTkVHR8vtdivDle2XfeIvbrfb7BJKlawwpyTJnZmljIxMk6spfejv/hVuhEgqp5SUFEKVCVJTU80uASUsNDT0nG0COsja7XZviM1z7bXXSpLS09OLHGRDQkJUq1atC66vMPLeTTgcDoXbQvyyT5wamXK73XI4HEUeucf5Cw091ccdYaEKN7i6iL/Q383hCDvVx6tXr86IrB+5XC6lpqaqWrVqcjqdZpeDEpKcnFyodgEdZEeMGKGDBw9qwYIF3mVJSUmSdEFB1GazKTw8/ELLOy/2ILu4apj/2e12LtfmR3khymanv5uB/u5f9qBT/Z0wZQ6n0+n313L4T2GmFUgBcNWCv9O+fXutW7dO8fHxSktL05dffqmRI0fq9ttvV82aNc0uDwAAACYK6BHZW265RdOmTdPs2bM1Z84cRUREqGPHjhoyZIjZpQEAAMBkARVkJ0yYkG9ZXFyc4uLiTKgGAAAAgSygpxYAAAAAZ0OQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCUFVJB9/fXX1atXL59lu3btUs+ePVW/fn21adNGb731lknVAQAAIJAETJBdvHixpk2b5rPs2LFjeuCBB3T11VcrMTFRgwcP1uTJk5WYmGhOkQAAAAgYwWYX8Ntvv+m5557Thg0bVK1aNZ91S5cuVUhIiF544QUFBwerZs2a2r9/v2bPnq2uXbuaUzAAAAACgukjsjt27FBISIjef/99xcbG+qzbvHmzmjZtquDgv/J28+bNlZqaqsOHD/u7VAAAAAQQ00dk27RpozZt2hS4Lj09XZGRkT7LKleuLEn69ddfValSpSLt0zAMZWRkFOm+58tms8npdMqT61Fubq5f9gnJ4/H4/IZ/eDyn3hsbHvq7P9HfzeH5Xxd3uVwyDMPcYkoRl8vl8xsXJ8MwZLPZztnO9CD7d9xut0JDQ32WhYWFSZIyMzOLvN3s7Gzt2rXrgmorLKfTqejoaLndbmW4sv2yT/zF7XabXUKpkhXmlCS5M7OUkVH0v1EUDf3dv8KNEEnllJKSQqgyQWpqqtkloISdmQELEtBB1uFwKCsry2dZXoANDw8v8nZDQkJUq1atC6qtsPLeTTgcDoXbQvyyT5wamXK73XI4HLLbTZ9BU2qEhp7q446wUIUbQSZXU3rQ383hCDvVx6tXr86IrB+5XC6lpqaqWrVqcjqdZpeDEpKcnFyodgEdZKtUqaKDBw/6LMu7/Y9//KPI27XZbBcUhIvCHmRXEK/rfme32xXEE+83eSHKZqe/m4H+7l/2oFP9nTBlDqfT6ffXcvhPYaYVSAFwstffadKkib7//nufuXbr169X9erVVbFiRRMrAwAAgNkCOsh27dpVf/zxh55++mklJydrxYoVWrBggQYMGGB2aQAAADBZQAfZihUrau7cuUpJSVHnzp0VHx+vESNGqHPnzmaXBgAAAJMF1BzZCRMm5FsWExOjhIQEE6oBAABAIAvoEVkAAADgbAiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkoLNLqAwfvvtN7Vq1Srf8vHjx6tLly4mVAQAAACzWSLI/vDDDwoLC9Onn34qm83mXR4REWFiVQAAADCTJYLs7t27Va1aNVWuXNnsUgAAABAgLDFH9scff1TNmjXNLgMAAAABxBJBdvfu3Tp69Kh69Oihli1bqnv37vrqq6/MLgsAAAAmCvipBTk5Odq3b59q1aqlJ598UmXLltVHH32k/v37a/78+WrRosV5b9MwDGVkZJRAtfnZbDY5nU55cj3Kzc31yz4heTwen9/wD4/n1Htjw0N/9yf6uzk8/+viLpdLhmGYW0wp4nK5fH7j4mQYhs95UWcT8EE2ODhYGzZsUFBQkBwOhySpbt262rNnj+bNm1ekIJudna1du3YVd6kFcjqdio6OltvtVoYr2y/7xF/cbrfZJZQqWWFOSZI7M0sZGZkmV1P60N/9K9wIkVROKSkphCoTpKamml0CSlhoaOg52wR8kJWkMmXK5Ft27bXX6ptvvinS9kJCQlSrVq0LLatQ8t5NOBwOhdtC/LJPnBqZcrvdcjgcststMYPmohAaeqqPO8JCFW4EmVxN6UF/N4cj7FQfr169OiOyfuRyuZSamqpq1arJ6XSaXQ5KSHJycqHaBXyQ3bNnj+69917NmjVLzZo18y7/73//W+QwarPZFB4eXlwlFoo9yK4gXtf9zm63K4gn3m/yQpTNTn83A/3dv+xBp/o7YcocTqfT76/l8J/CTCuQLHCyV82aNVWjRg298MIL2rx5s/bu3avx48dr27ZtGjRokNnlAQAAwCQBPyJrt9v12muvacqUKRoyZIhOnDih6OhozZ8/X5GRkWaXBwAAAJMEfJCVpEqVKmn8+PFmlwEAAIAAEvBTCwAAAICCEGQBAABgSQRZAAAAWBJBFgAAAJZEkAUAAIAlEWQBAABgSQRZAAAAWBJBFgAAAJZEkAUAAIAlEWQBAABgSQRZAAAAWBJBFgAAAJZEkAUAAIAlEWQBAABgSQRZAAAAWBJBFgAAAJZEkAUAAIAlEWQBAABgSQRZAAAAWBJBFgAAAJZEkAUAAIAlEWQBAABgSQRZAABgGTabTU6nUzabzexSEACCzS4AAAArcgTZZBgGgcrPnE6noqOjzS6jVArE/k6QBQCgCELtNtlsNn2XnqHjWblml1NqeHI9crvdcjgcsgfxwbK/lAsNUssq4WaXkQ9BFgCAC3A8K1fHMj1ml1Fq5ObmKsOVrXBbiIKCzK4GZuOtDAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCRLBFmPx6MZM2boxhtvVP369fXQQw/pwIEDZpcFAAAAE1kiyL766qtasmSJxowZo3feeUcej0f9+vVTVlaW2aUBAADAJAEfZLOysvTGG2/oscce080336zatWvr5ZdfVnp6uj755BOzywMAAIBJAj7I/vDDD/rzzz/VokUL77JLLrlE0dHR2rRpk4mVAQAAwEzBZhdwLunp6ZKkqlWr+iyvXLmyd935yM7OlmEY2r59e7HUVxg2m02Vcg1VMAy/7ROSIUM2l83sMkqV4D9tSjpMfzcD/d3/6O/mob/7n/1Pm5KO22T4qa9nZ2fLZjv3/3HAB1mXyyVJCg0N9VkeFham48ePn/f28p6Uwjw5xckRZJPEHx1KB/o7ShP6O0oTf+Unm812cQRZh8Mh6dRc2bx/S1JmZqacTud5b69BgwbFVhsAAADME/BzZPOmFBw8eNBn+cGDB/WPf/zDjJIAAAAQAAI+yNauXVtly5bVhg0bvMtOnDihnTt3qkmTJiZWBgAAADMF/NSC0NBQ9ezZU5MnT1aFChV0xRVX6KWXXlKVKlXUrl07s8sDAACASQI+yErSY489ppycHD3zzDNyu91q0qSJ5s2bp5CQELNLAwAAgElshr+uowAAAAAUo4CfIwsAAAAUhCALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsjBNr169FBUVVeDPxIkTTanpp59+UlRUlM9XIgP+0KZNG0VFRWn+/PkFrh81apSioqI0c+bMQm+vsG1xccrrU3k/tWvXVsOGDdWzZ09t2rTpgrefmJioG264QTExMVqzZk0xVFx89uzZoy+++OKs6zMyMrR48WL/FYQSQ5CFqeLi4vTNN9/k+xk8eLDZpQF+FxISotWrV+dbnpOTo08++UQ2m82EqmBlDz74oPe4+tVXX+mdd95R2bJl1a9fP/3yyy8XtO2JEyfqxhtv1L///W/dcMMNxVRx8RgwYICSkpLOuv6NN97QvHnz/FgRSgpBFqZyOBy67LLL8v2ULVvW7NIAv2vRooW2bdum9PR0n+Xr169XeHi4qlatalJlsKrw8HDvcbVy5cqKjIzU888/L7fbfcGjqMePH1fjxo11xRVXyOl0FlPF/sGXml48CLIIWIZhaM6cObrlllsUGxurO++8U++//753/YYNGxQdHa01a9aoffv2iomJUe/evfXrr79q7Nixaty4sVq0aKFZs2Z575OVlaWJEyeqTZs2qlu3rpo2bap//etfOnr06FnrSExMVFxcnGJiYhQXF6c333xTHo+nRB87SqeYmBhdfvnl+vjjj32Wr1q1SnFxcT4jssuWLVPHjh0VExOj+vXr67777vvbEagtW7aoR48eiomJ0c0336znn39ef/zxR4k9FgSu4OBgSVJoaKikU1MQJk6cqH/+859q1qyZNm7c+LfH37wpWJI0cuRItWnTRpJ08uRJPfvss2revLkaNWqk3r17+/TJmTNnqmfPnho6dKgaNmyoMWPG5Kstb9urV6/W3Xffrbp166pNmzZKSEjwabdy5UrdcccdiomJUZs2bfTqq68qNzfX+3h+/vlnxcfHq1evXvn2MXPmTMXHx+vnn39WVFSUfvrpp3NusyDbt2/XfffdpwYNGqhJkyZ69NFHfUa5N2/erN69e6thw4aqW7eu4uLi9N5770mSfvjhB0VFReWb4jFs2DA99thjZ90nCmAAJunZs6fxxBNPnHX9lClTjNatWxuff/65sX//fmP58uVGgwYNjEWLFhmGYRjr1683IiMjjc6dOxvbt283tmzZYjRp0sRo0qSJMWHCBGPfvn3GtGnTjMjISOOHH34wDMMwxowZY7Rp08bYsGGD8dNPPxlr1641mjZtaowdO9YwDMM4cOCAERkZaaxfv94wDMN45513jKZNmxoffvihkZaWZnz88cfG9ddfb0ycOLGEnx2UNq1btzZmzJhhTJo0ybj33nu9yzMzM40mTZoYO3bs8Lb55JNPjLp16xorV640fvrpJ2Pr1q1Gly5djDvuuCPf9gzDMHbt2mXExMQYs2bNMlJSUoxNmzYZd999t3H33XcbHo/H748V/nF6H8iTnp5uPPbYY0b9+vWNn3/+2duubt26xrfffmts377dyMzM/Nvjb05OjnHw4EEjMjLSWLBggXHkyBHD4/EY9957r9GnTx9j27ZtRnJysjFlyhTjuuuuM3bs2GEYhmHMmDHDiIyMNMaOHWukpaUZKSkp+WrOOwbfdNNNxqeffmqkpaUZzz//vFG7dm0jLS3NMAzDmD9/vlG3bl1j0aJFRkpKirFy5UqjYcOG3uP4kSNHjFatWhkTJkwwjh07lm8ff/zxhzFhwgSjVatWxsGDB42cnJxzbvNMOTk5RvPmzY2pU6caaWlpxn//+1+jS5cuRp8+fbzPc0xMjDFp0iQjNTXV2LNnjzFixAjjuuuuMw4dOmQYhmF06tTJGDlypHebJ06cMOrVq2d88cUXhf9PhkGQhWl69uxpREdHG/Xr1/f56du3r/Hnn38a9erVM9asWeNzn+nTpxutW7c2DOOvIHv6H/2jjz5qtGrVyvvi7HK5jMjISOODDz4wDMMwVq5caWzatMlnm0OGDDF69+5tGEb+INuqVStj/vz5Pu2XL19u1KtXz3C73cX3ZKDUywsdSUlJRlRUlJGenm4YhmF89tlnRvv27X3abNy40Xjvvfd87r9kyRKjdu3a+bZnGIYxfPhwY9CgQT7t09LSfPo6Lj6tW7c2rrvuOu+xtW7dukZkZKQRFxfnc9xs3bq1MXjwYO/twhx/DcMwIiMjjcTERMMwDOO7774zoqKi8gXHHj16eAcs8oLsiRMnzlpz3jH49OPuiRMnvMdxj8djtGzZ0pgwYYLP/RYsWGBcd9113m0XFOJPN2PGDO9jKew2T/f7778bUVFRxqJFi4zc3FzDME79TW3dutUwDMPYv3+/MWfOHJ83isnJyUZkZKT3NWjhwoVGo0aNvK8lCQkJxvXXX2/k5OSctW7kF2z2iDBKtzZt2mj48OE+yxwOh5KTk5WZmanHH39cdvtfM2BycnKUlZUlt9vtXXbNNdd4/x0eHq4rr7zS+xGsw+GQdGpKgSTdeeed+u677zR58mSlpqZq3759SklJUePGjfPVdvToUaWnp2vq1KmaPn26d7nH41FmZqZ++ukn1axZsxieBeAvdevW1VVXXaXVq1erd+/eWrVqlW677TafNk2aNNHevXv1yiuvaN++fdq/f79+/PHHs0552blzp/bv368GDRrkW7d37141a9asRB4LzNetWzfvx+t2u12XXnqpIiIi8rU7/ThamONv3rE1z44dO2QYhlq3bu2zPCsrS5mZmd7bFStWLHD/Zzr92JrXPjs7W0ePHtXhw4fVqFEjn/ZNmzZVdna29u3bp9jY2HNu/3RF2Wa5cuXUr18/jRkzRjNmzFDz5s110003KS4uTpJ09dVXq0uXLnrrrbe0e/dupaWl6YcffpAk73SFjh07auLEiVq7dq3++c9/6t1339Wdd96poKCg86q/tCPIwlRlypTxOYDmyTvZZdq0aapRo0a+9Xlzu6S/5nvlOf3Ae6ZRo0Zp9erV6tSpk9q0aaPBgwdr3rx5+u233/K1zQsFTz31lFq2bJlvPSfeoKTExcXp448/1r333qu1a9dq2bJlPus/+OADPfnkk+rYsaMaNmyobt26affu3XrhhRcK3J7H41HHjh01cODAfOsqVKhQIo8BgaFcuXIFHmPPdHowNf53IlRhjr95PB6PypYtqxUrVvxt+zMD8NkUtA/j1KfIBbbPO16f+XpQGEXd5vDhw3Xffffpyy+/1Lp16zRmzBjNnTtXK1euVFpamu677z5dd911atmypdq1a6fy5cvr7rvv9t6/XLlyatu2rd5//33Vq1dPW7du1dixY8+7/tKOk70QkGrUqKHg4GD98ssvuuaaa7w/X375pebNm/e3YfVsjh07poSEBD333HN66qmn1KVLF9WpU0f79u0r8EBWsWJFVahQQQcOHPCpYceOHZo2bVoxPEqgYHFxcdqyZYsSExN11VVX5Rv5nz17tu666y5NmDBBPXr0UJMmTXTgwAFJBb8oX3vttUpOTvbpxzk5ORo/frx+/fVXvzwmWEdRjr+RkZH6448/lJ2d7XOfOXPmaO3atcVWW6VKlVSpUiV9//33Pss3b96skJAQXX311YXazuknThZlm/v27dNzzz2nihUrqnv37poxY4bmzp2rvXv36ocfftA777yjihUrav78+XrooYd000036fDhw5J8/0a7du2qb7/9VitXrlRMTAyf8hUBQRYBKSIiQt26ddP06dP13nvv6cCBA1q+fLleeuklVa5cuUjbLFu2rCIiIrR27VrvR7HPPvusduzY4Z16cDqbzaaHHnpICxcu1KJFi5SWlqY1a9Zo9OjRcjgcBY4YAMWhTp06uuaaazRlypR80wqkU58GbNmyRTt27FBaWpoWLFigRYsWSVKBffnBBx/Uzp079fzzz2vv3r3aunWrHn/8caWmpqpatWol/XBgMUU5/t54442qU6eOhg4dqvXr12v//v0aP368VqxYUezhrG/fvlq0aJGWLFmi/fv364MPPlB8fLzuvfde7zSEMmXKKDU11RsezxQeHq7jx48rJSVF2dnZhdrm6cqXL6+PPvpIo0aN0t69e5WSkqJ3331X5cqVU40aNVSlShWlp6fryy+/1M8//6xPPvlEo0ePluT7N9qyZUtVqlRJc+fOVefOnYv1eSotmFqAgPXUU0+pfPnymj59ug4ePKiqVavqscceU79+/Yq0vZCQEE2fPl0TJkxQx44dVa5cOTVr1kzDhg3T66+/LpfLle8+Dz74oMLCwrRw4UJNmDBBlSpV0j333MPlUVDi4uLiNGvWLP3zn//Mt+7ZZ5/VqFGj1LNnT4WGhqp27dqaNGmShg4dqqSkpHxzvuvXr6+5c+dq+vTp6ty5s8LDw9WiRQs98cQTvCFDgc73+BsUFKQ33nhDL730koYMGSKXy6WaNWsqPj5eLVq0KNbaHnzwQYWGhurNN9/Uiy++qCpVquihhx5S3759vW169eqliRMnas+ePT6XbczTrl07LV26VHfccYcWLVpUqG2ernz58pozZ46mTJmie+65R7m5uapfv77mz5+vsmXLqnfv3tq3b59GjBihrKwsVatWTcOGDdOMGTOUlJSkVq1aSTo1Fe6OO+7Q/PnzC3zTinOzGWebHAIAAIAS9eSTTyonJ0eTJ082uxRLYkQWAADAz7799lslJyfro48+0uLFi80ux7IIsgAAAH6WmJioL774Qo8++qhiYmLMLseymFoAAAAAS+KqBQAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAQwB5//HFFRUXpjTfeMLsUAAg4XLUAAALUyZMndcMNN+jqq69WVlaWPv74Y5/viAeA0o4RWQAIUB9++KEk6emnn1ZqaqrWr19vckUAEFgIsgAQoBITE9WiRQs1b95c11xzjd555518bebNm6dbbrlFMTEx6tatmz777DNFRUVpw4YN3ja7d+/WgAED1LBhQzVs2FCDBw/WgQMH/PlQAKBEEGQBIADt2bNHSUlJ6tSpkySpU6dOWrt2rQ4fPuxtEx8fr8mTJysuLk6vvvqqYmNjNWTIEJ/tpKSkqFu3bjpy5IgmTpyocePG6cCBA+revbuOHDnix0cEAMWPIAsAASgxMVGXXnqp2rRpI0nq3LmzcnNztXz5cklSRkaG5syZox49emj48OG64YYb9NRTT3mDb574+Hg5nU4tWLBAt956q+Li4vTWW2/J7XZr7ty5/n5YAFCsCLIAEGCys7P1/vvvq23btnK73Tpx4oTKlCmjRo0aaenSpfJ4PNq2bZvcbrc6dOjgc9/bb7/d5/b69evVtGlTORwO5eTkKCcnR2XLllXjxo313Xff+fNhAUCxCza7AACAry+++EJHjhzR8uXLvSOwp/v666918uRJSVKFChV81lWsWNHn9u+//65Vq1Zp1apV+bZz5n0BwGoIsgAQYBITE3XVVVdp3LhxPssNw9Ajjzyid955R3379pUkHTlyRDVq1PC2OXr0qM99IiIi1LJlSz3wwAP59hMczEsAAGvjKAYAAeTQoUP6+uuv1a9fPzVr1izf+g4dOmjFihV65plnFBERoTVr1qhJkybe9Z988olP+6ZNmyo5OVl16tTxBlfDMDR8+HBdc801qlOnTsk+IAAoQQRZAAggK1euVE5Ojm677bYC13fq1EnLli3TihUr1K9fP82YMUNOp1NNmzbVxo0b9fbbb0uS7PZTp0A8/PDD6tatmwYMGKDu3bsrLCxMCQkJ+vTTTzVjxgy/PS4AKAl8sxcABJC4uDgFBQV5vwzhTIZhqG3btsrOztbnn3+u2bNnKyEhQYcPH1ZsbKxuvfVWjR8/XitWrNB1110nSdqxY4defvllbdmyRYZhKDIyUv3799ctt9ziz4cGAMWOIAsAFpSTk6MPP/xQzZo1U9WqVb3LFy9erLFjx2rDhg265JJLTKwQAEoeQRYALOq2225TaGioBg0apPLly2v37t2aNm2a2rZtq/Hjx5tdHgCUOIIsAFjUgQMHNHXqVG3YsEEnTpzQ5ZdfrjvuuEMDBgxQSEiI2eUBQIkjyAIAAMCS+GYvAAAAWBJBFgAAAJZEkAUAAIAlEWQBAABgSQRZAAAAWBJBFgAAAJZEkAUAAIAlEWQBAABgSQRZAAAAWNL/A797RRZhO2VmAAAAAElFTkSuQmCC",
+ "text/plain": [
+ "