import os import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # Set seaborn style sns.set(style="whitegrid") # Ensure the 'assets' directory exists if not os.path.exists('assets'): os.makedirs('assets') # Function to plot age distribution def plot_age_distribution(df): plt.figure(figsize=(8, 5)) sns.histplot(df['Age'], kde=False, color='skyblue', bins=5) plt.title('Age Distribution') plt.xlabel('Age') plt.ylabel('Count') plot_filename = 'assets/age_distribution.png' plt.savefig(plot_filename) plt.show() plt.close() return plot_filename # Function to plot gender distribution (Donut Chart) def plot_gender_distribution(df): gender_counts = df['Gender'].value_counts() plt.figure(figsize=(7, 7)) plt.pie(gender_counts, labels=gender_counts.index, autopct='%1.1f%%', startangle=90, colors=sns.color_palette("pastel")) plt.title('Gender Distribution') plt.gca().set_aspect('equal') plot_filename = 'assets/gender_distribution.png' plt.savefig(plot_filename) plt.show() plt.close() return plot_filename # Function to plot nationality distribution def plot_nationality_distribution(df): plt.figure(figsize=(8, 5)) sns.countplot(y=df['Nationality'], hue=df['Nationality'], palette='coolwarm', legend=False) plt.title('Nationality Distribution') plt.gca().set_aspect('equal') plot_filename = 'assets/nationality_distribution.png' plt.savefig(plot_filename) plt.show() plt.close() return plot_filename # Function to plot native language distribution def plot_native_language_distribution(df): plt.figure(figsize=(8, 5)) sns.countplot(y=df['Native Language'], hue=df['Native Language'], palette='coolwarm', legend=False) plt.title('Native Language Distribution') plt.gca().set_aspect('equal') plot_filename = 'assets/native_language_distribution.png' plt.savefig(plot_filename) plt.show() plt.close() return plot_filename # Function to plot familiarity with English distribution def plot_familiarity_with_english(df): plt.figure(figsize=(8, 5)) sns.countplot(y=df['Familiarity with English'], hue=df['Familiarity with English'], palette='coolwarm', legend=False) plt.title('Familiarity with English') plt.xlabel('Count') plt.ylabel('Familiarity Level') plot_filename = 'assets/familiarity_with_eng.png' plt.savefig(plot_filename) plt.show() plt.close() return plot_filename # Function to plot recording duration distribution def plot_duration_distribution(df): plt.figure(figsize=(8, 5)) sns.histplot(df['Duration (secs)'], kde=False, color='coral', bins=10) plt.title('Recording Duration Distribution') plt.xlabel('Duration (seconds)') plt.ylabel('Count') plot_filename = 'assets/recording_duration_distribution.png' plt.savefig(plot_filename) plt.show() plt.close() return plot_filename def main(): # Load the dataset df = pd.read_csv("metadata.csv") # Plot the distributions and save files plot_files = [ plot_age_distribution(df), plot_gender_distribution(df), plot_nationality_distribution(df), plot_native_language_distribution(df), plot_familiarity_with_english(df), plot_duration_distribution(df) ] # Testing for plot_file in plot_files: assert os.path.exists(plot_file), f"Plot {plot_file} was not saved." print(f"Assertion passed for {plot_file}") if __name__ == "__main__": main()