# Lint as: python3 """Cyberbullying classification dataset.""" import csv import datasets from datasets.tasks import TextClassification import sys csv.field_size_limit(sys.maxsize) _DESCRIPTION = """\ This is a dataset for cyberbullying in bangla. """ _CITATION = """""" _TRAIN_DOWNLOAD_URL = "https://huggingface.co/datasets/samanjoy2/main_cyberbully_splitted/resolve/main/train.csv" _TEST_DOWNLOAD_URL = "https://huggingface.co/datasets/samanjoy2/main_cyberbully_splitted/resolve/main/test.csv" _VALID_DOWNLOAD_URL = "https://huggingface.co/datasets/samanjoy2/main_cyberbully_splitted/resolve/main/validaton.csv" CATEGORY_MAPPING = {'not bully': 0, 'sexual': 1, 'religious': 2, 'threat': 3, 'troll': 4 } class NG(datasets.GeneratorBasedBuilder): """20ng classification dataset.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=list(CATEGORY_MAPPING.keys())), } ), homepage="", citation=_CITATION, task_templates=[TextClassification(text_column="text", label_column="label")], ) def _split_generators(self, dl_manager): train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL) valid_path = dl_manager.download_and_extract(_VALID_DOWNLOAD_URL) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_path}), ] def _generate_examples(self, filepath): """Generate examples.""" with open(filepath, encoding="utf-8") as csv_file: csv_reader = csv.reader( csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True ) _ = next(csv_reader) # skip header for id_, row in enumerate(csv_reader): text, label = row label = CATEGORY_MAPPING[label] yield id_, {"text": text, "label": label}