Datasets:

Modalities:
Text
Formats:
json
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 5,467 Bytes
b0c394f
4428a45
b0c394f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4428a45
b0c394f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4428a45
b0c394f
 
491d96a
b0c394f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
license: afl-3.0
task_categories:
- text-generation
language:
- it
- en
size_categories:
- 10K<n<100K
configs:
- config_name: default
  data_files:
  - split: train
    path: piqa.train.json
  - split: validation
    path: piqa.validation.json
---

# PIQA - Italian (IT)
This dataset is an Italian translation of [PIQA](https://arxiv.org/abs/1911.11641). PIQA stands for Physical Interaction Question Answering, a dataset of questions about common scenarios that require an understanding of the physical world. 

## Dataset Details
The dataset consists of questions about common scenarios that require an understanding of the physical world. Each question is associated with a correct answer and a distractor. The task is to predict the correct answer to the question.

The dataset includes the following splits:
* Train: 16,044 rows
* Validation: 1,830 rows

### Differences with the original dataset
* **Did you know that not all questions in PIQA are questions?** In the original dataset, some instances are not questions but text completions, statements, or even single words. In this version, we categorize all instances so as to give the possibility to filter out non-question instances or treat them differently.
* The number of instances in this dataset is smaller than the original dataset due to the translation process, during which some instances were filtered out.

### Languages
This dataset is **fully parallel** between English and Italian. This allows us to have comparable evaluation setups and results across the two languages.

### Translation Process
The translation has been carried out using [🍱 OBenTO-LLM](https://github.com/c-simone/llm-data-translation), an open-source tool for LLM-based translation.
The main motivation for using an open-source LLM is to encourage free, open, reproducible, and transparent research in LLM evaluation.
See [🍱 OBenTO-LLM](https://github.com/c-simone/llm-data-translation) for more details on the translation process.

### Other Information
- **Original dataset by:** [Bisk et al.](https://arxiv.org/abs/1911.11641)
- **Translation by:** [Simone Conia](https://scholar.google.com/citations?user=S1tqbTcAAAAJ)
- **Languages:** Italian, English
- **License:** AFL 3.0

## Dataset Format
This is an example that shows the format of the dataset, where:
* `id`: a unique ID for each sample;
* `category`: type of task;
* `input_text`: the original English sentence in the dataset;
* `input_text_translation`: the translation of the sentence in Italian;
* `choices`: the original English choices;
* `choice_translations`: the translation of the choices in Italian;
* `gold_index`: the index of the correct answer.

#### Example of a question in PIQA
```json
{
  "id": "piqa_3",
  "category": "question",
  "input_text": "How do you shake something?",
  "input_text_translation": "Come si fa a scuotere qualcosa?",
  "choices": [
    "Move it up and down and side to side quickly.",
    "Stir it very quickly."
  ],
  "choice_translations": [
    "Si deve muovere rapidamente avanti e indietro e da un lato all'altro.",
    "Si mescola molto velocemente."
  ],
  "gold_index": 0
}
```

#### Example of a text completion in PIQA
```json
{
  "id": "piqa_1",
  "category": "text_completion",
  "input_text": "To permanently attach metal legs to a chair, you can",
  "input_text_translation": "Per fissare in modo permanente le gambe di metallo a una sedia, si può",
  "choices": [
    "weld the metal together to get it to stay firmly in place.",
    "nail the metal together to get it to stay firmly in place."
  ],
  "choice_translations": [
    "saldare il metallo per farlo rimanere saldamente in posizione.",
    "incollare il metallo per farlo rimanere saldamente in posizione."
  ],
  "gold_index": 0
}
```

#### Example of a "topic" in PIQA
```json
{
  "id": "piqa_29",
  "category": "topic",
  "input_text": "Soothe a painful sunburn.",
  "input_text_translation": "Alleviare una scottatura solare dolorosa.",
  "choices": [
    "Wait until brewed tea bag is cool, then apply on burn.",
    "Wait until brewed tea bag is hot, then apply on burn."
  ],
  "choice_translations": [
    "Attendere fino a quando il sacchetto del tè in infusione è freddo, quindi applicarlo sulla scottatura.",
    "Attendere fino a quando il sacchetto del tè in infusione è caldo, quindi applicarlo sulla scottatura."
  ],
  "gold_index": 0
}
```

#### Example of a "property" in PIQA
```json
{
  "id": "piqa_855",
  "category": "property",
  "input_text": "Sleeves:",
  "input_text_translation": "Maniche:",
  "choices": [
    "Can be cut by sciscors with ease.",
    "Can be cut by a knife with ease."
  ],
  "choice_translations": [
    "possono essere tagliate facilmente con le forbici.",
    "possono essere tagliate con facilità con un coltello."
  ],
  "gold_index": 0
}
```

## License
The dataset is distributed under the AFL 3.0 license.

## Acknowledgements
I would like to thank the authors of the original dataset for making it available to the research community.
I would also like to thank [Future AI Research](https://future-ai-research.it/) for supporting this work and funding my research.

### Special Thanks
My special thanks go to:
* Pere-Lluís Huguet Cabot and Riccardo Orlando for their help with [🍱 OBenTO-LLM](https://github.com/c-simone/llm-data-translation).

## Dataset Card Authors
* [Simone Conia](https://scholar.google.com/citations?user=S1tqbTcAAAAJ): simone.conia@uniroma1.it