File size: 4,278 Bytes
a20f378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os

import datasets
from datasets.tasks import ImageClassification


_HOMEPAGE = "https://universe.roboflow.com/yolo-po0ro/proj-2-qmdk0/dataset/3"
_LICENSE = "CC BY 4.0"
_CITATION = """\
@misc{ proj-2-qmdk0_dataset,
    title = { proj 2 Dataset },
    type = { Open Source Dataset },
    author = { Yolo },
    howpublished = { \\url{ https://universe.roboflow.com/yolo-po0ro/proj-2-qmdk0 } },
    url = { https://universe.roboflow.com/yolo-po0ro/proj-2-qmdk0 },
    journal = { Roboflow Universe },
    publisher = { Roboflow },
    year = { 2023 },
    month = { oct },
    note = { visited on 2023-10-18 },
}
"""
_CATEGORIES = ['Thermostat', 'Housing', 'Insert']


class THERMOCLASSIFICATIONConfig(datasets.BuilderConfig):
    """Builder Config for thermo-classification"""

    def __init__(self, data_urls, **kwargs):
        """
        BuilderConfig for thermo-classification.

        Args:
          data_urls: `dict`, name to url to download the zip file from.
          **kwargs: keyword arguments forwarded to super.
        """
        super(THERMOCLASSIFICATIONConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
        self.data_urls = data_urls


class THERMOCLASSIFICATION(datasets.GeneratorBasedBuilder):
    """thermo-classification image classification dataset"""

    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIGS = [
        THERMOCLASSIFICATIONConfig(
            name="full",
            description="Full version of thermo-classification dataset.",
            data_urls={
    "train": "https://huggingface.co/datasets/sargishunanyan/thermo-classification/resolve/main/data/train.zip",
    "validation": "https://huggingface.co/datasets/sargishunanyan/thermo-classification/resolve/main/data/valid.zip",
    "test": "https://huggingface.co/datasets/sargishunanyan/thermo-classification/resolve/main/data/test.zip",
}
,
        ),
        THERMOCLASSIFICATIONConfig(
            name="mini",
            description="Mini version of thermo-classification dataset.",
            data_urls={
                "train": "https://huggingface.co/datasets/sargishunanyan/thermo-classification/resolve/main/data/valid-mini.zip",
                "validation": "https://huggingface.co/datasets/sargishunanyan/thermo-classification/resolve/main/data/valid-mini.zip",
                "test": "https://huggingface.co/datasets/sargishunanyan/thermo-classification/resolve/main/data/valid-mini.zip",
            },
        )
    ]

    def _info(self):
        return datasets.DatasetInfo(
            features=datasets.Features(
                {
                    "image_file_path": datasets.Value("string"),
                    "image": datasets.Image(),
                    "labels": datasets.features.ClassLabel(names=_CATEGORIES),
                }
            ),
            supervised_keys=("image", "labels"),
            homepage=_HOMEPAGE,
            citation=_CITATION,
            license=_LICENSE,
            task_templates=[ImageClassification(image_column="image", label_column="labels")],
        )

    def _split_generators(self, dl_manager):
        data_files = dl_manager.download_and_extract(self.config.data_urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "files": dl_manager.iter_files([data_files["train"]]),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "files": dl_manager.iter_files([data_files["validation"]]),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "files": dl_manager.iter_files([data_files["test"]]),
                },
            ),
]

    def _generate_examples(self, files):
        for i, path in enumerate(files):
            file_name = os.path.basename(path)
            if file_name.endswith((".jpg", ".png", ".jpeg", ".bmp", ".tif", ".tiff")):
                yield i, {
                    "image_file_path": path,
                    "image": path,
                    "labels": os.path.basename(os.path.dirname(path)),
                }