File size: 3,798 Bytes
9b4884a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
RePaint scheduler Overview DDPM-based inpainting scheduler for unsupervised inpainting with extreme masks. Intended for use with RePaintPipeline. Based on the paper RePaint: Inpainting using Denoising Diffusion Probabilistic Models and the original implementation by Andreas Lugmayr et al.: https://github.com/andreas128/RePaint RePaintScheduler class diffusers.RePaintScheduler < source > ( num_train_timesteps: int = 1000 beta_start: float = 0.0001 beta_end: float = 0.02 beta_schedule: str = 'linear' eta: float = 0.0 trained_betas: typing.Optional[numpy.ndarray] = None clip_sample: bool = True ) Parameters num_train_timesteps (int) β number of diffusion steps used to train the model. beta_start (float) β the starting beta value of inference. beta_end (float) β the final beta value. beta_schedule (str) β the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from linear, scaled_linear, or squaredcos_cap_v2. eta (float) β The weight of noise for added noise in a diffusion step. Its value is between 0.0 and 1.0 -0.0 is DDIM and 1.0 is DDPM scheduler respectively. trained_betas (np.ndarray, optional) β option to pass an array of betas directly to the constructor to bypass beta_start, beta_end etc. variance_type (str) β options to clip the variance used when adding noise to the denoised sample. Choose from fixed_small, fixed_small_log, fixed_large, fixed_large_log, learned or learned_range. clip_sample (bool, default True) β option to clip predicted sample between -1 and 1 for numerical stability. RePaint is a schedule for DDPM inpainting inside a given mask. ~ConfigMixin takes care of storing all config attributes that are passed in the schedulerβs __init__ function, such as num_train_timesteps. They can be accessed via scheduler.config.num_train_timesteps. SchedulerMixin provides general loading and saving functionality via the SchedulerMixin.save_pretrained() and from_pretrained() functions. For more details, see the original paper: https://arxiv.org/pdf/2201.09865.pdf scale_model_input < source > ( sample: FloatTensor timestep: typing.Optional[int] = None ) β torch.FloatTensor Parameters sample (torch.FloatTensor) β input sample timestep (int, optional) β current timestep Returns torch.FloatTensor scaled input sample Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. step < source > ( model_output: FloatTensor timestep: int sample: FloatTensor original_image: FloatTensor mask: FloatTensor generator: typing.Optional[torch._C.Generator] = None return_dict: bool = True ) β ~schedulers.scheduling_utils.RePaintSchedulerOutput or tuple Parameters model_output (torch.FloatTensor) β direct output from learned diffusion model. timestep (int) β current discrete timestep in the diffusion chain. sample (torch.FloatTensor) β current instance of sample being created by diffusion process. original_image (torch.FloatTensor) β the original image to inpaint on. mask (torch.FloatTensor) β the mask where 0.0 values define which part of the original image to inpaint (change). generator (torch.Generator, optional) β random number generator. return_dict (bool) β option for returning tuple rather than DDPMSchedulerOutput class Returns ~schedulers.scheduling_utils.RePaintSchedulerOutput or tuple ~schedulers.scheduling_utils.RePaintSchedulerOutput if return_dict is True, otherwise a tuple. When returning a tuple, the first element is the sample tensor. Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). |