Datasets:
Tasks:
Depth Estimation
Modalities:
Image
Languages:
English
Size:
1K - 10K
ArXiv:
Tags:
depth-estimation
License:
loading of multiple shards (#5)
Browse files- feat: dataloader with multiple shards. (592761d9480e93d5df79d8b3313c7ab6803756ca)
- chore: change to relative paths. (a918863adf9c4f13aaa06d6daf6f11e158bdad69)
- chore: add readme generated from dataset-cli test. (0e7dfb0bff5480c59af5366131dc4f6b0bd71b08)
- README.md +16 -1
- nyu_depth_v2.py +25 -46
README.md
CHANGED
@@ -1,3 +1,18 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
dataset_info:
|
4 |
+
features:
|
5 |
+
- name: image
|
6 |
+
dtype: image
|
7 |
+
- name: depth_map
|
8 |
+
dtype: image
|
9 |
+
splits:
|
10 |
+
- name: train
|
11 |
+
num_bytes: 20212097551
|
12 |
+
num_examples: 47584
|
13 |
+
- name: validation
|
14 |
+
num_bytes: 240785762
|
15 |
+
num_examples: 654
|
16 |
+
download_size: 35151124480
|
17 |
+
dataset_size: 20452883313
|
18 |
+
---
|
nyu_depth_v2.py
CHANGED
@@ -14,7 +14,7 @@
|
|
14 |
"""NYU-Depth V2."""
|
15 |
|
16 |
|
17 |
-
import
|
18 |
|
19 |
import datasets
|
20 |
import h5py
|
@@ -44,9 +44,8 @@ _HOMEPAGE = "https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html"
|
|
44 |
_LICENSE = "Apace 2.0 License"
|
45 |
|
46 |
_URLS = {
|
47 |
-
"
|
48 |
-
|
49 |
-
}
|
50 |
}
|
51 |
|
52 |
_IMG_EXTENSIONS = [".h5"]
|
@@ -57,16 +56,6 @@ class NYUDepthV2(datasets.GeneratorBasedBuilder):
|
|
57 |
|
58 |
VERSION = datasets.Version("1.0.0")
|
59 |
|
60 |
-
BUILDER_CONFIGS = [
|
61 |
-
datasets.BuilderConfig(
|
62 |
-
name="depth_estimation",
|
63 |
-
version=VERSION,
|
64 |
-
description="The depth estimation variant.",
|
65 |
-
),
|
66 |
-
]
|
67 |
-
|
68 |
-
DEFAULT_CONFIG_NAME = "depth_estimation"
|
69 |
-
|
70 |
def _info(self):
|
71 |
features = datasets.Features(
|
72 |
{"image": datasets.Image(), "depth_map": datasets.Image()}
|
@@ -83,52 +72,42 @@ class NYUDepthV2(datasets.GeneratorBasedBuilder):
|
|
83 |
# Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L21-L23
|
84 |
return any(filename.endswith(extension) for extension in _IMG_EXTENSIONS)
|
85 |
|
86 |
-
def
|
87 |
-
# Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L31-L44
|
88 |
-
file_paths = []
|
89 |
-
dir = os.path.expanduser(dir)
|
90 |
-
|
91 |
-
for target in sorted(os.listdir(dir)):
|
92 |
-
d = os.path.join(dir, target)
|
93 |
-
if not os.path.isdir(d):
|
94 |
-
continue
|
95 |
-
for root, _, fnames in sorted(os.walk(d)):
|
96 |
-
for fname in sorted(fnames):
|
97 |
-
if self._is_image_file(fname):
|
98 |
-
path = os.path.join(root, fname)
|
99 |
-
file_paths.append(path)
|
100 |
-
|
101 |
-
return file_paths
|
102 |
-
|
103 |
-
def _h5_loader(self, path):
|
104 |
# Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L8-L13
|
105 |
-
|
|
|
106 |
rgb = np.array(h5f["rgb"])
|
107 |
rgb = np.transpose(rgb, (1, 2, 0))
|
108 |
depth = np.array(h5f["depth"])
|
109 |
return rgb, depth
|
110 |
|
111 |
def _split_generators(self, dl_manager):
|
112 |
-
|
113 |
-
base_path = dl_manager.download_and_extract(urls)["train/val"]
|
114 |
-
|
115 |
-
train_data_files = self._get_file_paths(
|
116 |
-
os.path.join(base_path, "nyudepthv2", "train")
|
117 |
-
)
|
118 |
-
val_data_files = self._get_file_paths(os.path.join(base_path, "nyudepthv2", "val"))
|
119 |
|
120 |
return [
|
121 |
datasets.SplitGenerator(
|
122 |
name=datasets.Split.TRAIN,
|
123 |
-
gen_kwargs={
|
|
|
|
|
|
|
|
|
124 |
),
|
125 |
datasets.SplitGenerator(
|
126 |
name=datasets.Split.VALIDATION,
|
127 |
-
gen_kwargs={
|
|
|
|
|
|
|
|
|
128 |
),
|
129 |
]
|
130 |
|
131 |
-
def _generate_examples(self,
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
14 |
"""NYU-Depth V2."""
|
15 |
|
16 |
|
17 |
+
import io
|
18 |
|
19 |
import datasets
|
20 |
import h5py
|
|
|
44 |
_LICENSE = "Apace 2.0 License"
|
45 |
|
46 |
_URLS = {
|
47 |
+
"train": [f"data/train-{i:06d}.tar" for i in range(12)],
|
48 |
+
"val": [f"data/val-{i:06d}.tar" for i in range(2)],
|
|
|
49 |
}
|
50 |
|
51 |
_IMG_EXTENSIONS = [".h5"]
|
|
|
56 |
|
57 |
VERSION = datasets.Version("1.0.0")
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
def _info(self):
|
60 |
features = datasets.Features(
|
61 |
{"image": datasets.Image(), "depth_map": datasets.Image()}
|
|
|
72 |
# Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L21-L23
|
73 |
return any(filename.endswith(extension) for extension in _IMG_EXTENSIONS)
|
74 |
|
75 |
+
def _h5_loader(self, bytes_stream):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
# Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L8-L13
|
77 |
+
f = io.BytesIO(bytes_stream)
|
78 |
+
h5f = h5py.File(f, "r")
|
79 |
rgb = np.array(h5f["rgb"])
|
80 |
rgb = np.transpose(rgb, (1, 2, 0))
|
81 |
depth = np.array(h5f["depth"])
|
82 |
return rgb, depth
|
83 |
|
84 |
def _split_generators(self, dl_manager):
|
85 |
+
archives = dl_manager.download(_URLS)
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
return [
|
88 |
datasets.SplitGenerator(
|
89 |
name=datasets.Split.TRAIN,
|
90 |
+
gen_kwargs={
|
91 |
+
"archives": [
|
92 |
+
dl_manager.iter_archive(archive) for archive in archives["train"]
|
93 |
+
]
|
94 |
+
},
|
95 |
),
|
96 |
datasets.SplitGenerator(
|
97 |
name=datasets.Split.VALIDATION,
|
98 |
+
gen_kwargs={
|
99 |
+
"archives": [
|
100 |
+
dl_manager.iter_archive(archive) for archive in archives["val"]
|
101 |
+
]
|
102 |
+
},
|
103 |
),
|
104 |
]
|
105 |
|
106 |
+
def _generate_examples(self, archives):
|
107 |
+
idx = 0
|
108 |
+
for archive in archives:
|
109 |
+
for path, file in archive:
|
110 |
+
if self._is_image_file(path):
|
111 |
+
image, depth = self._h5_loader(file.read())
|
112 |
+
yield idx, {"image": image, "depth_map": depth}
|
113 |
+
idx += 1
|