sayakpaul HF staff commited on
Commit
aa6ad2f
·
verified ·
1 Parent(s): c1fc6e2

Upload folder using huggingface_hub

Browse files
text_outputs_single_file/test_model_controlnet_single_file_output.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ ============================= test session starts ==============================
2
+ platform linux -- Python 3.8.10, pytest-8.2.0, pluggy-1.5.0
3
+ rootdir: /diffusers
4
+ configfile: pyproject.toml
5
+ plugins: xdist-3.6.1, timeout-2.3.1, requests-mock-1.10.0
6
+ collected 2 items
7
+
8
+ tests/single_file/test_model_controlnet_single_file.py .. [100%]
9
+
10
+ ============================== 2 passed in 5.30s ===============================
text_outputs_single_file/test_model_sd_cascade_unet_single_file_output.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ ============================= test session starts ==============================
2
+ platform linux -- Python 3.8.10, pytest-8.2.0, pluggy-1.5.0
3
+ rootdir: /diffusers
4
+ configfile: pyproject.toml
5
+ plugins: xdist-3.6.1, timeout-2.3.1, requests-mock-1.10.0
6
+ collected 4 items
7
+
8
+ tests/single_file/test_model_sd_cascade_unet_single_file.py .... [100%]
9
+
10
+ ======================== 4 passed in 193.05s (0:03:13) =========================
text_outputs_single_file/test_model_vae_single_file_output.txt ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ============================= test session starts ==============================
2
+ platform linux -- Python 3.8.10, pytest-8.2.0, pluggy-1.5.0
3
+ rootdir: /diffusers
4
+ configfile: pyproject.toml
5
+ plugins: xdist-3.6.1, timeout-2.3.1, requests-mock-1.10.0
6
+ collected 3 items
7
+
8
+ tests/single_file/test_model_vae_single_file.py ..F [100%]
9
+
10
+ =================================== FAILURES ===================================
11
+ __ AutoencoderKLSingleFileTests.test_single_file_inference_same_as_pretrained __
12
+
13
+ self = <tests.single_file.test_model_vae_single_file.AutoencoderKLSingleFileTests testMethod=test_single_file_inference_same_as_pretrained>
14
+
15
+ def test_single_file_inference_same_as_pretrained(self):
16
+ model_1 = self.model_class.from_pretrained(self.repo_id, subfolder="vae").to(torch_device)
17
+ model_2 = self.model_class.from_single_file(self.ckpt_path).to(torch_device)
18
+
19
+ image = self.get_sd_image(33)
20
+
21
+ with torch.no_grad():
22
+ sample_1 = model_1(image).sample
23
+ sample_2 = model_2(image).sample
24
+
25
+ assert sample_1.shape == sample_2.shape
26
+
27
+ output_slice_1 = sample_1[-1, -2:, -2:, :2].flatten().float().cpu()
28
+ output_slice_2 = sample_2[-1, -2:, -2:, :2].flatten().float().cpu()
29
+
30
+ > assert torch_all_close(output_slice_1, output_slice_2, atol=3e-3)
31
+
32
+ tests/single_file/test_model_vae_single_file.py:81:
33
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
34
+
35
+ a = tensor([-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814])
36
+ b = tensor([-0.1320, -0.0016, 0.0303, 0.0990, -0.1214, -0.1188, -0.0463, -0.0008])
37
+ args = (), kwargs = {'atol': 0.003}
38
+
39
+ def torch_all_close(a, b, *args, **kwargs):
40
+ if not is_torch_available():
41
+ raise ValueError("PyTorch needs to be installed to use this function.")
42
+ if not torch.allclose(a, b, *args, **kwargs):
43
+ > assert False, f"Max diff is absolute {(a - b).abs().max()}. Diff tensor is {(a - b).abs()}."
44
+ E AssertionError: Max diff is absolute 0.9882212281227112. Diff tensor is tensor([0.0288, 0.9882, 0.0790, 0.1767, 0.1501, 0.9556, 0.1592, 0.0806]).
45
+
46
+ src/diffusers/utils/testing_utils.py:97: AssertionError
47
+ =========================== short test summary info ============================
48
+ FAILED tests/single_file/test_model_vae_single_file.py::AutoencoderKLSingleFileTests::test_single_file_inference_same_as_pretrained
49
+ ========================= 1 failed, 2 passed in 17.25s =========================
text_outputs_single_file/test_stable_diffusion_controlnet_img2img_single_file_output.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ============================= test session starts ==============================
2
+ platform linux -- Python 3.8.10, pytest-8.2.0, pluggy-1.5.0
3
+ rootdir: /diffusers
4
+ configfile: pyproject.toml
5
+ plugins: xdist-3.6.1, timeout-2.3.1, requests-mock-1.10.0
6
+ collected 7 items
7
+
8
+ tests/single_file/test_stable_diffusion_controlnet_img2img_single_file.py . [ 14%]
9
+ ...... [100%]
10
+
11
+ ======================== 7 passed in 182.23s (0:03:02) =========================
text_outputs_single_file/test_stable_diffusion_controlnet_inpaint_single_file_output.txt ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ============================= test session starts ==============================
2
+ platform linux -- Python 3.8.10, pytest-8.2.0, pluggy-1.5.0
3
+ rootdir: /diffusers
4
+ configfile: pyproject.toml
5
+ plugins: xdist-3.6.1, timeout-2.3.1, requests-mock-1.10.0
6
+ collected 7 items
7
+
8
+ tests/single_file/test_stable_diffusion_controlnet_inpaint_single_file.py . [ 14%]
9
+ ...FF. [100%]
10
+
11
+ =================================== FAILURES ===================================
12
+ _ StableDiffusionControlNetInpaintPipelineSingleFileSlowTests.test_single_file_components_with_original_config _
13
+
14
+ self = <tests.single_file.test_stable_diffusion_controlnet_inpaint_single_file.StableDiffusionControlNetInpaintPipelineSingleFileSlowTests testMethod=test_single_file_components_with_original_config>
15
+
16
+ def test_single_file_components_with_original_config(self):
17
+ controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny", variant="fp16")
18
+ pipe = self.pipeline_class.from_pretrained(self.repo_id, controlnet=controlnet)
19
+ pipe_single_file = self.pipeline_class.from_single_file(
20
+ self.ckpt_path, controlnet=controlnet, original_config=self.original_config
21
+ )
22
+
23
+ > super()._compare_component_configs(pipe, pipe_single_file)
24
+
25
+ tests/single_file/test_stable_diffusion_controlnet_inpaint_single_file.py:122:
26
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
27
+
28
+ self = <tests.single_file.test_stable_diffusion_controlnet_inpaint_single_file.StableDiffusionControlNetInpaintPipelineSingleFileSlowTests testMethod=test_single_file_components_with_original_config>
29
+ pipe = StableDiffusionControlNetInpaintPipeline {
30
+ "_class_name": "StableDiffusionControlNetInpaintPipeline",
31
+ "_diffusers_... ],
32
+ "unet": [
33
+ "diffusers",
34
+ "UNet2DConditionModel"
35
+ ],
36
+ "vae": [
37
+ "diffusers",
38
+ "AutoencoderKL"
39
+ ]
40
+ }
41
+
42
+ single_file_pipe = StableDiffusionControlNetInpaintPipeline {
43
+ "_class_name": "StableDiffusionControlNetInpaintPipeline",
44
+ "_diffusers_... ],
45
+ "unet": [
46
+ "diffusers",
47
+ "UNet2DConditionModel"
48
+ ],
49
+ "vae": [
50
+ "diffusers",
51
+ "AutoencoderKL"
52
+ ]
53
+ }
54
+
55
+
56
+ def _compare_component_configs(self, pipe, single_file_pipe):
57
+ for param_name, param_value in single_file_pipe.text_encoder.config.to_dict().items():
58
+ if param_name in ["torch_dtype", "architectures", "_name_or_path"]:
59
+ continue
60
+ assert pipe.text_encoder.config.to_dict()[param_name] == param_value
61
+
62
+ PARAMS_TO_IGNORE = [
63
+ "torch_dtype",
64
+ "_name_or_path",
65
+ "architectures",
66
+ "_use_default_values",
67
+ "_diffusers_version",
68
+ ]
69
+ for component_name, component in single_file_pipe.components.items():
70
+ if component_name in single_file_pipe._optional_components:
71
+ continue
72
+
73
+ # skip testing transformer based components here
74
+ # skip text encoders / safety checkers since they have already been tested
75
+ if component_name in ["text_encoder", "tokenizer", "safety_checker", "feature_extractor"]:
76
+ continue
77
+
78
+ assert component_name in pipe.components, f"single file {component_name} not found in pretrained pipeline"
79
+ assert isinstance(
80
+ component, pipe.components[component_name].__class__
81
+ ), f"single file {component.__class__.__name__} and pretrained {pipe.components[component_name].__class__.__name__} are not the same"
82
+
83
+ for param_name, param_value in component.config.items():
84
+ if param_name in PARAMS_TO_IGNORE:
85
+ continue
86
+
87
+ # Some pretrained configs will set upcast attention to None
88
+ # In single file loading it defaults to the value in the class __init__ which is False
89
+ if param_name == "upcast_attention" and pipe.components[component_name].config[param_name] is None:
90
+ pipe.components[component_name].config[param_name] = param_value
91
+
92
+ > assert (
93
+ pipe.components[component_name].config[param_name] == param_value
94
+ ), f"single file {param_name}: {param_value} differs from pretrained {pipe.components[component_name].config[param_name]}"
95
+ E AssertionError: single file sample_size: 512 differs from pretrained 256
96
+
97
+ tests/single_file/single_file_testing_utils.py:85: AssertionError
98
+ ----------------------------- Captured stderr call -----------------------------
99
+ safety_checker/model.safetensors not found
100
+
101
+ Loading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]
102
+ Loading pipeline components...: 14%|█▍ | 1/7 [00:00<00:01, 3.93it/s]
103
+ Loading pipeline components...: 29%|██▊ | 2/7 [00:00<00:01, 4.50it/s]
104
+ Loading pipeline components...: 57%|█████▋ | 4/7 [00:00<00:00, 4.44it/s]
105
+ Loading pipeline components...: 71%|███████▏ | 5/7 [00:02<00:01, 1.64it/s]
106
+ Loading pipeline components...: 100%|██████████| 7/7 [00:02<00:00, 2.94it/s]
107
+
108
+ Fetching 12 files: 0%| | 0/12 [00:00<?, ?it/s]
109
+ Fetching 12 files: 100%|██████████| 12/12 [00:00<00:00, 105517.08it/s]
110
+
111
+ Loading pipeline components...: 0%| | 0/6 [00:00<?, ?it/s]Some weights of the model checkpoint were not used when initializing CLIPTextModel:
112
+ ['text_model.embeddings.position_ids']
113
+
114
+ Loading pipeline components...: 50%|█████ | 3/6 [00:00<00:00, 19.29it/s]
115
+ Loading pipeline components...: 83%|████████▎ | 5/6 [00:00<00:00, 6.71it/s]
116
+ Loading pipeline components...: 100%|██████████| 6/6 [00:00<00:00, 8.21it/s]
117
+ You have disabled the safety checker for <class 'diffusers.pipelines.controlnet.pipeline_controlnet_inpaint.StableDiffusionControlNetInpaintPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
118
+ _ StableDiffusionControlNetInpaintPipelineSingleFileSlowTests.test_single_file_components_with_original_config_local_files_only _
119
+
120
+ self = <tests.single_file.test_stable_diffusion_controlnet_inpaint_single_file.StableDiffusionControlNetInpaintPipelineSingleFileSlowTests testMethod=test_single_file_components_with_original_config_local_files_only>
121
+
122
+ def test_single_file_components_with_original_config_local_files_only(self):
123
+ controlnet = ControlNetModel.from_pretrained(
124
+ "lllyasviel/control_v11p_sd15_canny", torch_dtype=torch.float16, variant="fp16"
125
+ )
126
+ pipe = self.pipeline_class.from_pretrained(
127
+ self.repo_id,
128
+ controlnet=controlnet,
129
+ safety_checker=None,
130
+ )
131
+
132
+ with tempfile.TemporaryDirectory() as tmpdir:
133
+ ckpt_filename = self.ckpt_path.split("/")[-1]
134
+ local_ckpt_path = download_single_file_checkpoint(self.repo_id, ckpt_filename, tmpdir)
135
+ local_original_config = download_original_config(self.original_config, tmpdir)
136
+
137
+ pipe_single_file = self.pipeline_class.from_single_file(
138
+ local_ckpt_path,
139
+ original_config=local_original_config,
140
+ controlnet=controlnet,
141
+ safety_checker=None,
142
+ local_files_only=True,
143
+ )
144
+ > super()._compare_component_configs(pipe, pipe_single_file)
145
+
146
+ tests/single_file/test_stable_diffusion_controlnet_inpaint_single_file.py:146:
147
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
148
+
149
+ self = <tests.single_file.test_stable_diffusion_controlnet_inpaint_single_file.StableDiffusionControlNetInpaintPipelineSingleFileSlowTests testMethod=test_single_file_components_with_original_config_local_files_only>
150
+ pipe = StableDiffusionControlNetInpaintPipeline {
151
+ "_class_name": "StableDiffusionControlNetInpaintPipeline",
152
+ "_diffusers_... ],
153
+ "unet": [
154
+ "diffusers",
155
+ "UNet2DConditionModel"
156
+ ],
157
+ "vae": [
158
+ "diffusers",
159
+ "AutoencoderKL"
160
+ ]
161
+ }
162
+
163
+ single_file_pipe = StableDiffusionControlNetInpaintPipeline {
164
+ "_class_name": "StableDiffusionControlNetInpaintPipeline",
165
+ "_diffusers_... ],
166
+ "unet": [
167
+ "diffusers",
168
+ "UNet2DConditionModel"
169
+ ],
170
+ "vae": [
171
+ "diffusers",
172
+ "AutoencoderKL"
173
+ ]
174
+ }
175
+
176
+
177
+ def _compare_component_configs(self, pipe, single_file_pipe):
178
+ for param_name, param_value in single_file_pipe.text_encoder.config.to_dict().items():
179
+ if param_name in ["torch_dtype", "architectures", "_name_or_path"]:
180
+ continue
181
+ assert pipe.text_encoder.config.to_dict()[param_name] == param_value
182
+
183
+ PARAMS_TO_IGNORE = [
184
+ "torch_dtype",
185
+ "_name_or_path",
186
+ "architectures",
187
+ "_use_default_values",
188
+ "_diffusers_version",
189
+ ]
190
+ for component_name, component in single_file_pipe.components.items():
191
+ if component_name in single_file_pipe._optional_components:
192
+ continue
193
+
194
+ # skip testing transformer based components here
195
+ # skip text encoders / safety checkers since they have already been tested
196
+ if component_name in ["text_encoder", "tokenizer", "safety_checker", "feature_extractor"]:
197
+ continue
198
+
199
+ assert component_name in pipe.components, f"single file {component_name} not found in pretrained pipeline"
200
+ assert isinstance(
201
+ component, pipe.components[component_name].__class__
202
+ ), f"single file {component.__class__.__name__} and pretrained {pipe.components[component_name].__class__.__name__} are not the same"
203
+
204
+ for param_name, param_value in component.config.items():
205
+ if param_name in PARAMS_TO_IGNORE:
206
+ continue
207
+
208
+ # Some pretrained configs will set upcast attention to None
209
+ # In single file loading it defaults to the value in the class __init__ which is False
210
+ if param_name == "upcast_attention" and pipe.components[component_name].config[param_name] is None:
211
+ pipe.components[component_name].config[param_name] = param_value
212
+
213
+ > assert (
214
+ pipe.components[component_name].config[param_name] == param_value
215
+ ), f"single file {param_name}: {param_value} differs from pretrained {pipe.components[component_name].config[param_name]}"
216
+ E AssertionError: single file sample_size: 512 differs from pretrained 256
217
+
218
+ tests/single_file/single_file_testing_utils.py:85: AssertionError
219
+ ----------------------------- Captured stderr call -----------------------------
220
+ text_encoder/model.safetensors not found
221
+
222
+ Loading pipeline components...: 0%| | 0/6 [00:00<?, ?it/s]
223
+ Loading pipeline components...: 17%|█▋ | 1/6 [00:00<00:01, 4.19it/s]
224
+ Loading pipeline components...: 33%|███▎ | 2/6 [00:00<00:00, 4.67it/s]
225
+ Loading pipeline components...: 67%|██████▋ | 4/6 [00:01<00:00, 2.04it/s]
226
+ Loading pipeline components...: 100%|██████████| 6/6 [00:01<00:00, 3.43it/s]
227
+ You have disabled the safety checker for <class 'diffusers.pipelines.controlnet.pipeline_controlnet_inpaint.StableDiffusionControlNetInpaintPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
228
+
229
+ Loading pipeline components...: 0%| | 0/6 [00:00<?, ?it/s]Some weights of the model checkpoint were not used when initializing CLIPTextModel:
230
+ ['text_model.embeddings.position_ids']
231
+
232
+ Loading pipeline components...: 67%|██████▋ | 4/6 [00:00<00:00, 23.42it/s]
233
+ Loading pipeline components...: 100%|██████████| 6/6 [00:00<00:00, 10.34it/s]
234
+ You have disabled the safety checker for <class 'diffusers.pipelines.controlnet.pipeline_controlnet_inpaint.StableDiffusionControlNetInpaintPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
235
+ =========================== short test summary info ============================
236
+ FAILED tests/single_file/test_stable_diffusion_controlnet_inpaint_single_file.py::StableDiffusionControlNetInpaintPipelineSingleFileSlowTests::test_single_file_components_with_original_config
237
+ FAILED tests/single_file/test_stable_diffusion_controlnet_inpaint_single_file.py::StableDiffusionControlNetInpaintPipelineSingleFileSlowTests::test_single_file_components_with_original_config_local_files_only
238
+ =================== 2 failed, 5 passed in 226.26s (0:03:46) ====================
text_outputs_single_file/test_stable_diffusion_controlnet_single_file_output.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ============================= test session starts ==============================
2
+ platform linux -- Python 3.8.10, pytest-8.2.0, pluggy-1.5.0
3
+ rootdir: /diffusers
4
+ configfile: pyproject.toml
5
+ plugins: xdist-3.6.1, timeout-2.3.1, requests-mock-1.10.0
6
+ collected 7 items
7
+
8
+ tests/single_file/test_stable_diffusion_controlnet_single_file.py ...... [ 85%]
9
+ . [100%]
10
+
11
+ ============================== 7 passed in 37.73s ==============================
text_outputs_single_file/test_stable_diffusion_img2img_single_file_output.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ============================= test session starts ==============================
2
+ platform linux -- Python 3.8.10, pytest-8.2.0, pluggy-1.5.0
3
+ rootdir: /diffusers
4
+ configfile: pyproject.toml
5
+ plugins: xdist-3.6.1, timeout-2.3.1, requests-mock-1.10.0
6
+ collected 14 items
7
+
8
+ tests/single_file/test_stable_diffusion_img2img_single_file.py ......... [ 64%]
9
+ ..... [100%]
10
+
11
+ =============================== warnings summary ===============================
12
+ tests/single_file/test_stable_diffusion_img2img_single_file.py::StableDiffusionImg2ImgPipelineSingleFileSlowTests::test_single_file_components_with_original_config
13
+ tests/single_file/test_stable_diffusion_img2img_single_file.py::StableDiffusionImg2ImgPipelineSingleFileSlowTests::test_single_file_components_with_original_config_local_files_only
14
+ tests/single_file/test_stable_diffusion_img2img_single_file.py::StableDiffusion21Img2ImgPipelineSingleFileSlowTests::test_single_file_components_with_original_config
15
+ tests/single_file/test_stable_diffusion_img2img_single_file.py::StableDiffusion21Img2ImgPipelineSingleFileSlowTests::test_single_file_components_with_original_config_local_files_only
16
+ /diffusers/src/diffusers/loaders/single_file_utils.py:604: FutureWarning: `image_size` is deprecated and will be removed in version 1.0.0. Configuring UNet2DConditionModel with the `upcast_attention` argument to `from_single_file`is deprecated and will be ignored in future versions.
17
+ deprecate("image_size", "1.0.0", deprecation_message)
18
+
19
+ -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
20
+ ================== 14 passed, 4 warnings in 149.17s (0:02:29) ==================
text_outputs_single_file/test_stable_diffusion_inpaint_single_file_output.txt ADDED
@@ -0,0 +1,311 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ============================= test session starts ==============================
2
+ platform linux -- Python 3.8.10, pytest-8.2.0, pluggy-1.5.0
3
+ rootdir: /diffusers
4
+ configfile: pyproject.toml
5
+ plugins: xdist-3.6.1, timeout-2.3.1, requests-mock-1.10.0
6
+ collected 15 items
7
+
8
+ tests/single_file/test_stable_diffusion_inpaint_single_file.py ....FF... [ 60%]
9
+ ...... [100%]
10
+
11
+ =================================== FAILURES ===================================
12
+ _ StableDiffusionInpaintPipelineSingleFileSlowTests.test_single_file_components_with_original_config _
13
+
14
+ self = <tests.single_file.test_stable_diffusion_inpaint_single_file.StableDiffusionInpaintPipelineSingleFileSlowTests testMethod=test_single_file_components_with_original_config>
15
+ pipe = StableDiffusionInpaintPipeline {
16
+ "_class_name": "StableDiffusionInpaintPipeline",
17
+ "_diffusers_version": "0.28.0.de... ],
18
+ "unet": [
19
+ "diffusers",
20
+ "UNet2DConditionModel"
21
+ ],
22
+ "vae": [
23
+ "diffusers",
24
+ "AutoencoderKL"
25
+ ]
26
+ }
27
+
28
+ single_file_pipe = StableDiffusionInpaintPipeline {
29
+ "_class_name": "StableDiffusionInpaintPipeline",
30
+ "_diffusers_version": "0.28.0.de... ],
31
+ "unet": [
32
+ "diffusers",
33
+ "UNet2DConditionModel"
34
+ ],
35
+ "vae": [
36
+ "diffusers",
37
+ "AutoencoderKL"
38
+ ]
39
+ }
40
+
41
+
42
+ def test_single_file_components_with_original_config(
43
+ self,
44
+ pipe=None,
45
+ single_file_pipe=None,
46
+ ):
47
+ pipe = pipe or self.pipeline_class.from_pretrained(self.repo_id, safety_checker=None)
48
+ # Not possible to infer this value when original config is provided
49
+ # we just pass it in here otherwise this test will fail
50
+ upcast_attention = pipe.unet.config.upcast_attention
51
+
52
+ single_file_pipe = single_file_pipe or self.pipeline_class.from_single_file(
53
+ self.ckpt_path,
54
+ original_config=self.original_config,
55
+ safety_checker=None,
56
+ upcast_attention=upcast_attention,
57
+ )
58
+
59
+ > self._compare_component_configs(pipe, single_file_pipe)
60
+
61
+ tests/single_file/single_file_testing_utils.py:127:
62
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
63
+
64
+ self = <tests.single_file.test_stable_diffusion_inpaint_single_file.StableDiffusionInpaintPipelineSingleFileSlowTests testMethod=test_single_file_components_with_original_config>
65
+ pipe = StableDiffusionInpaintPipeline {
66
+ "_class_name": "StableDiffusionInpaintPipeline",
67
+ "_diffusers_version": "0.28.0.de... ],
68
+ "unet": [
69
+ "diffusers",
70
+ "UNet2DConditionModel"
71
+ ],
72
+ "vae": [
73
+ "diffusers",
74
+ "AutoencoderKL"
75
+ ]
76
+ }
77
+
78
+ single_file_pipe = StableDiffusionInpaintPipeline {
79
+ "_class_name": "StableDiffusionInpaintPipeline",
80
+ "_diffusers_version": "0.28.0.de... ],
81
+ "unet": [
82
+ "diffusers",
83
+ "UNet2DConditionModel"
84
+ ],
85
+ "vae": [
86
+ "diffusers",
87
+ "AutoencoderKL"
88
+ ]
89
+ }
90
+
91
+
92
+ def _compare_component_configs(self, pipe, single_file_pipe):
93
+ for param_name, param_value in single_file_pipe.text_encoder.config.to_dict().items():
94
+ if param_name in ["torch_dtype", "architectures", "_name_or_path"]:
95
+ continue
96
+ assert pipe.text_encoder.config.to_dict()[param_name] == param_value
97
+
98
+ PARAMS_TO_IGNORE = [
99
+ "torch_dtype",
100
+ "_name_or_path",
101
+ "architectures",
102
+ "_use_default_values",
103
+ "_diffusers_version",
104
+ ]
105
+ for component_name, component in single_file_pipe.components.items():
106
+ if component_name in single_file_pipe._optional_components:
107
+ continue
108
+
109
+ # skip testing transformer based components here
110
+ # skip text encoders / safety checkers since they have already been tested
111
+ if component_name in ["text_encoder", "tokenizer", "safety_checker", "feature_extractor"]:
112
+ continue
113
+
114
+ assert component_name in pipe.components, f"single file {component_name} not found in pretrained pipeline"
115
+ assert isinstance(
116
+ component, pipe.components[component_name].__class__
117
+ ), f"single file {component.__class__.__name__} and pretrained {pipe.components[component_name].__class__.__name__} are not the same"
118
+
119
+ for param_name, param_value in component.config.items():
120
+ if param_name in PARAMS_TO_IGNORE:
121
+ continue
122
+
123
+ # Some pretrained configs will set upcast attention to None
124
+ # In single file loading it defaults to the value in the class __init__ which is False
125
+ if param_name == "upcast_attention" and pipe.components[component_name].config[param_name] is None:
126
+ pipe.components[component_name].config[param_name] = param_value
127
+
128
+ > assert (
129
+ pipe.components[component_name].config[param_name] == param_value
130
+ ), f"single file {param_name}: {param_value} differs from pretrained {pipe.components[component_name].config[param_name]}"
131
+ E AssertionError: single file sample_size: 512 differs from pretrained 256
132
+
133
+ tests/single_file/single_file_testing_utils.py:85: AssertionError
134
+ ----------------------------- Captured stderr call -----------------------------
135
+ unet/diffusion_pytorch_model.safetensors not found
136
+
137
+ Loading pipeline components...: 0%| | 0/6 [00:00<?, ?it/s]
138
+ Loading pipeline components...: 17%|█▋ | 1/6 [00:00<00:01, 4.94it/s]
139
+ Loading pipeline components...: 33%|███▎ | 2/6 [00:01<00:03, 1.24it/s]
140
+ Loading pipeline components...: 50%|█████ | 3/6 [00:01<00:01, 1.81it/s]
141
+ Loading pipeline components...: 100%|██████████| 6/6 [00:01<00:00, 3.40it/s]
142
+ You have disabled the safety checker for <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
143
+
144
+ Fetching 12 files: 0%| | 0/12 [00:00<?, ?it/s]
145
+ Fetching 12 files: 100%|██████████| 12/12 [00:00<00:00, 103991.01it/s]
146
+
147
+ Loading pipeline components...: 0%| | 0/6 [00:00<?, ?it/s]Some weights of the model checkpoint were not used when initializing CLIPTextModel:
148
+ ['text_model.embeddings.position_ids']
149
+
150
+ Loading pipeline components...: 50%|█████ | 3/6 [00:00<00:00, 19.38it/s]
151
+ Loading pipeline components...: 83%|████████▎ | 5/6 [00:00<00:00, 7.49it/s]
152
+ Loading pipeline components...: 100%|██████████| 6/6 [00:00<00:00, 9.08it/s]
153
+ You have disabled the safety checker for <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
154
+ _ StableDiffusionInpaintPipelineSingleFileSlowTests.test_single_file_components_with_original_config_local_files_only _
155
+
156
+ self = <tests.single_file.test_stable_diffusion_inpaint_single_file.StableDiffusionInpaintPipelineSingleFileSlowTests testMethod=test_single_file_components_with_original_config_local_files_only>
157
+ pipe = StableDiffusionInpaintPipeline {
158
+ "_class_name": "StableDiffusionInpaintPipeline",
159
+ "_diffusers_version": "0.28.0.de... ],
160
+ "unet": [
161
+ "diffusers",
162
+ "UNet2DConditionModel"
163
+ ],
164
+ "vae": [
165
+ "diffusers",
166
+ "AutoencoderKL"
167
+ ]
168
+ }
169
+
170
+ single_file_pipe = StableDiffusionInpaintPipeline {
171
+ "_class_name": "StableDiffusionInpaintPipeline",
172
+ "_diffusers_version": "0.28.0.de... ],
173
+ "unet": [
174
+ "diffusers",
175
+ "UNet2DConditionModel"
176
+ ],
177
+ "vae": [
178
+ "diffusers",
179
+ "AutoencoderKL"
180
+ ]
181
+ }
182
+
183
+
184
+ def test_single_file_components_with_original_config_local_files_only(
185
+ self,
186
+ pipe=None,
187
+ single_file_pipe=None,
188
+ ):
189
+ pipe = pipe or self.pipeline_class.from_pretrained(self.repo_id, safety_checker=None)
190
+
191
+ # Not possible to infer this value when original config is provided
192
+ # we just pass it in here otherwise this test will fail
193
+ upcast_attention = pipe.unet.config.upcast_attention
194
+
195
+ with tempfile.TemporaryDirectory() as tmpdir:
196
+ ckpt_filename = self.ckpt_path.split("/")[-1]
197
+ local_ckpt_path = download_single_file_checkpoint(self.repo_id, ckpt_filename, tmpdir)
198
+ local_original_config = download_original_config(self.original_config, tmpdir)
199
+
200
+ single_file_pipe = single_file_pipe or self.pipeline_class.from_single_file(
201
+ local_ckpt_path,
202
+ original_config=local_original_config,
203
+ safety_checker=None,
204
+ upcast_attention=upcast_attention,
205
+ local_files_only=True,
206
+ )
207
+
208
+ > self._compare_component_configs(pipe, single_file_pipe)
209
+
210
+ tests/single_file/single_file_testing_utils.py:153:
211
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
212
+
213
+ self = <tests.single_file.test_stable_diffusion_inpaint_single_file.StableDiffusionInpaintPipelineSingleFileSlowTests testMethod=test_single_file_components_with_original_config_local_files_only>
214
+ pipe = StableDiffusionInpaintPipeline {
215
+ "_class_name": "StableDiffusionInpaintPipeline",
216
+ "_diffusers_version": "0.28.0.de... ],
217
+ "unet": [
218
+ "diffusers",
219
+ "UNet2DConditionModel"
220
+ ],
221
+ "vae": [
222
+ "diffusers",
223
+ "AutoencoderKL"
224
+ ]
225
+ }
226
+
227
+ single_file_pipe = StableDiffusionInpaintPipeline {
228
+ "_class_name": "StableDiffusionInpaintPipeline",
229
+ "_diffusers_version": "0.28.0.de... ],
230
+ "unet": [
231
+ "diffusers",
232
+ "UNet2DConditionModel"
233
+ ],
234
+ "vae": [
235
+ "diffusers",
236
+ "AutoencoderKL"
237
+ ]
238
+ }
239
+
240
+
241
+ def _compare_component_configs(self, pipe, single_file_pipe):
242
+ for param_name, param_value in single_file_pipe.text_encoder.config.to_dict().items():
243
+ if param_name in ["torch_dtype", "architectures", "_name_or_path"]:
244
+ continue
245
+ assert pipe.text_encoder.config.to_dict()[param_name] == param_value
246
+
247
+ PARAMS_TO_IGNORE = [
248
+ "torch_dtype",
249
+ "_name_or_path",
250
+ "architectures",
251
+ "_use_default_values",
252
+ "_diffusers_version",
253
+ ]
254
+ for component_name, component in single_file_pipe.components.items():
255
+ if component_name in single_file_pipe._optional_components:
256
+ continue
257
+
258
+ # skip testing transformer based components here
259
+ # skip text encoders / safety checkers since they have already been tested
260
+ if component_name in ["text_encoder", "tokenizer", "safety_checker", "feature_extractor"]:
261
+ continue
262
+
263
+ assert component_name in pipe.components, f"single file {component_name} not found in pretrained pipeline"
264
+ assert isinstance(
265
+ component, pipe.components[component_name].__class__
266
+ ), f"single file {component.__class__.__name__} and pretrained {pipe.components[component_name].__class__.__name__} are not the same"
267
+
268
+ for param_name, param_value in component.config.items():
269
+ if param_name in PARAMS_TO_IGNORE:
270
+ continue
271
+
272
+ # Some pretrained configs will set upcast attention to None
273
+ # In single file loading it defaults to the value in the class __init__ which is False
274
+ if param_name == "upcast_attention" and pipe.components[component_name].config[param_name] is None:
275
+ pipe.components[component_name].config[param_name] = param_value
276
+
277
+ > assert (
278
+ pipe.components[component_name].config[param_name] == param_value
279
+ ), f"single file {param_name}: {param_value} differs from pretrained {pipe.components[component_name].config[param_name]}"
280
+ E AssertionError: single file sample_size: 512 differs from pretrained 256
281
+
282
+ tests/single_file/single_file_testing_utils.py:85: AssertionError
283
+ ----------------------------- Captured stderr call -----------------------------
284
+ unet/diffusion_pytorch_model.safetensors not found
285
+
286
+ Loading pipeline components...: 0%| | 0/6 [00:00<?, ?it/s]
287
+ Loading pipeline components...: 17%|█▋ | 1/6 [00:00<00:00, 5.11it/s]
288
+ Loading pipeline components...: 33%|███▎ | 2/6 [00:01<00:03, 1.27it/s]
289
+ Loading pipeline components...: 50%|█████ | 3/6 [00:01<00:01, 1.84it/s]
290
+ Loading pipeline components...: 100%|██████████| 6/6 [00:01<00:00, 3.47it/s]
291
+ You have disabled the safety checker for <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
292
+
293
+ Loading pipeline components...: 0%| | 0/6 [00:00<?, ?it/s]Some weights of the model checkpoint were not used when initializing CLIPTextModel:
294
+ ['text_model.embeddings.position_ids']
295
+
296
+ Loading pipeline components...: 67%|██████▋ | 4/6 [00:00<00:00, 23.56it/s]
297
+ Loading pipeline components...: 100%|██████████| 6/6 [00:00<00:00, 10.16it/s]
298
+ You have disabled the safety checker for <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
299
+ =============================== warnings summary ===============================
300
+ tests/single_file/test_stable_diffusion_inpaint_single_file.py::StableDiffusionInpaintPipelineSingleFileSlowTests::test_single_file_components_with_original_config
301
+ tests/single_file/test_stable_diffusion_inpaint_single_file.py::StableDiffusionInpaintPipelineSingleFileSlowTests::test_single_file_components_with_original_config_local_files_only
302
+ tests/single_file/test_stable_diffusion_inpaint_single_file.py::StableDiffusion21InpaintPipelineSingleFileSlowTests::test_single_file_components_with_original_config
303
+ tests/single_file/test_stable_diffusion_inpaint_single_file.py::StableDiffusion21InpaintPipelineSingleFileSlowTests::test_single_file_components_with_original_config_local_files_only
304
+ /diffusers/src/diffusers/loaders/single_file_utils.py:604: FutureWarning: `image_size` is deprecated and will be removed in version 1.0.0. Configuring UNet2DConditionModel with the `upcast_attention` argument to `from_single_file`is deprecated and will be ignored in future versions.
305
+ deprecate("image_size", "1.0.0", deprecation_message)
306
+
307
+ -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
308
+ =========================== short test summary info ============================
309
+ FAILED tests/single_file/test_stable_diffusion_inpaint_single_file.py::StableDiffusionInpaintPipelineSingleFileSlowTests::test_single_file_components_with_original_config
310
+ FAILED tests/single_file/test_stable_diffusion_inpaint_single_file.py::StableDiffusionInpaintPipelineSingleFileSlowTests::test_single_file_components_with_original_config_local_files_only
311
+ ============= 2 failed, 13 passed, 4 warnings in 133.82s (0:02:13) =============
text_outputs_single_file/test_stable_diffusion_single_file_output.txt ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ============================= test session starts ==============================
2
+ platform linux -- Python 3.8.10, pytest-8.2.0, pluggy-1.5.0
3
+ rootdir: /diffusers
4
+ configfile: pyproject.toml
5
+ plugins: xdist-3.6.1, timeout-2.3.1, requests-mock-1.10.0
6
+ collected 16 items
7
+
8
+ tests/single_file/test_stable_diffusion_single_file.py ........F....... [100%]
9
+
10
+ =================================== FAILURES ===================================
11
+ _ StableDiffusionPipelineSingleFileSlowTests.test_single_file_legacy_scheduler_loading _
12
+
13
+ self = <tests.single_file.test_stable_diffusion_single_file.StableDiffusionPipelineSingleFileSlowTests testMethod=test_single_file_legacy_scheduler_loading>
14
+
15
+ def test_single_file_legacy_scheduler_loading(self):
16
+ # Default is PNDM for this checkpoint
17
+ > pipe = self.pipeline_class.from_single_file(
18
+ self.ckpt_path, original_config=self.original_config, local_files_only=True, scheduler_type="ddim"
19
+ )
20
+
21
+ tests/single_file/test_stable_diffusion_single_file.py:56:
22
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
23
+ /opt/venv/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py:119: in _inner_fn
24
+ return fn(*args, **kwargs)
25
+ src/diffusers/loaders/single_file.py:380: in from_single_file
26
+ original_config = fetch_original_config(original_config, local_files_only=local_files_only)
27
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
28
+
29
+ original_config_file = 'https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml'
30
+ local_files_only = True
31
+
32
+ def fetch_original_config(original_config_file, local_files_only=False):
33
+ if os.path.isfile(original_config_file):
34
+ with open(original_config_file, "r") as fp:
35
+ original_config_file = fp.read()
36
+
37
+ elif is_valid_url(original_config_file):
38
+ if local_files_only:
39
+ > raise ValueError(
40
+ "`local_files_only` is set to True, but a URL was provided as `original_config_file`. "
41
+ "Please provide a valid local file path."
42
+ )
43
+ E ValueError: `local_files_only` is set to True, but a URL was provided as `original_config_file`. Please provide a valid local file path.
44
+
45
+ src/diffusers/loaders/single_file_utils.py:338: ValueError
46
+ =============================== warnings summary ===============================
47
+ tests/single_file/test_stable_diffusion_single_file.py::StableDiffusionPipelineSingleFileSlowTests::test_single_file_components_with_original_config
48
+ tests/single_file/test_stable_diffusion_single_file.py::StableDiffusionPipelineSingleFileSlowTests::test_single_file_components_with_original_config_local_files_only
49
+ tests/single_file/test_stable_diffusion_single_file.py::StableDiffusion21PipelineSingleFileSlowTests::test_single_file_components_with_original_config
50
+ tests/single_file/test_stable_diffusion_single_file.py::StableDiffusion21PipelineSingleFileSlowTests::test_single_file_components_with_original_config_local_files_only
51
+ /diffusers/src/diffusers/loaders/single_file_utils.py:604: FutureWarning: `image_size` is deprecated and will be removed in version 1.0.0. Configuring UNet2DConditionModel with the `upcast_attention` argument to `from_single_file`is deprecated and will be ignored in future versions.
52
+ deprecate("image_size", "1.0.0", deprecation_message)
53
+
54
+ tests/single_file/test_stable_diffusion_single_file.py::StableDiffusionPipelineSingleFileSlowTests::test_single_file_legacy_scaling_factor
55
+ /diffusers/src/diffusers/loaders/single_file.py:377: FutureWarning: `scaling_factor` is deprecated and will be removed in version 1.0.0. Passing the `scaling_factor` argument to `from_single_file is deprecated and will be ignored in future versions.
56
+ deprecate("scaling_factor", "1.0.0", deprecation_message)
57
+
58
+ -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
59
+ =========================== short test summary info ============================
60
+ FAILED tests/single_file/test_stable_diffusion_single_file.py::StableDiffusionPipelineSingleFileSlowTests::test_single_file_legacy_scheduler_loading
61
+ ============= 1 failed, 15 passed, 5 warnings in 225.98s (0:03:45) =============
text_outputs_single_file/test_stable_diffusion_upscale_single_file_output.txt ADDED
@@ -0,0 +1,307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ============================= test session starts ==============================
2
+ platform linux -- Python 3.8.10, pytest-8.2.0, pluggy-1.5.0
3
+ rootdir: /diffusers
4
+ configfile: pyproject.toml
5
+ plugins: xdist-3.6.1, timeout-2.3.1, requests-mock-1.10.0
6
+ collected 7 items
7
+
8
+ tests/single_file/test_stable_diffusion_upscale_single_file.py ....FF. [100%]
9
+
10
+ =================================== FAILURES ===================================
11
+ _ StableDiffusionUpscalePipelineSingleFileSlowTests.test_single_file_components_with_original_config _
12
+
13
+ self = <tests.single_file.test_stable_diffusion_upscale_single_file.StableDiffusionUpscalePipelineSingleFileSlowTests testMethod=test_single_file_components_with_original_config>
14
+ pipe = StableDiffusionUpscalePipeline {
15
+ "_class_name": "StableDiffusionUpscalePipeline",
16
+ "_diffusers_version": "0.28.0.de...DConditionModel"
17
+ ],
18
+ "vae": [
19
+ "diffusers",
20
+ "AutoencoderKL"
21
+ ],
22
+ "watermarker": [
23
+ null,
24
+ null
25
+ ]
26
+ }
27
+
28
+ single_file_pipe = StableDiffusionUpscalePipeline {
29
+ "_class_name": "StableDiffusionUpscalePipeline",
30
+ "_diffusers_version": "0.28.0.de...DConditionModel"
31
+ ],
32
+ "vae": [
33
+ "diffusers",
34
+ "AutoencoderKL"
35
+ ],
36
+ "watermarker": [
37
+ null,
38
+ null
39
+ ]
40
+ }
41
+
42
+
43
+ def test_single_file_components_with_original_config(
44
+ self,
45
+ pipe=None,
46
+ single_file_pipe=None,
47
+ ):
48
+ pipe = pipe or self.pipeline_class.from_pretrained(self.repo_id, safety_checker=None)
49
+ # Not possible to infer this value when original config is provided
50
+ # we just pass it in here otherwise this test will fail
51
+ upcast_attention = pipe.unet.config.upcast_attention
52
+
53
+ single_file_pipe = single_file_pipe or self.pipeline_class.from_single_file(
54
+ self.ckpt_path,
55
+ original_config=self.original_config,
56
+ safety_checker=None,
57
+ upcast_attention=upcast_attention,
58
+ )
59
+
60
+ > self._compare_component_configs(pipe, single_file_pipe)
61
+
62
+ tests/single_file/single_file_testing_utils.py:127:
63
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
64
+
65
+ self = <tests.single_file.test_stable_diffusion_upscale_single_file.StableDiffusionUpscalePipelineSingleFileSlowTests testMethod=test_single_file_components_with_original_config>
66
+ pipe = StableDiffusionUpscalePipeline {
67
+ "_class_name": "StableDiffusionUpscalePipeline",
68
+ "_diffusers_version": "0.28.0.de...DConditionModel"
69
+ ],
70
+ "vae": [
71
+ "diffusers",
72
+ "AutoencoderKL"
73
+ ],
74
+ "watermarker": [
75
+ null,
76
+ null
77
+ ]
78
+ }
79
+
80
+ single_file_pipe = StableDiffusionUpscalePipeline {
81
+ "_class_name": "StableDiffusionUpscalePipeline",
82
+ "_diffusers_version": "0.28.0.de...DConditionModel"
83
+ ],
84
+ "vae": [
85
+ "diffusers",
86
+ "AutoencoderKL"
87
+ ],
88
+ "watermarker": [
89
+ null,
90
+ null
91
+ ]
92
+ }
93
+
94
+
95
+ def _compare_component_configs(self, pipe, single_file_pipe):
96
+ for param_name, param_value in single_file_pipe.text_encoder.config.to_dict().items():
97
+ if param_name in ["torch_dtype", "architectures", "_name_or_path"]:
98
+ continue
99
+ assert pipe.text_encoder.config.to_dict()[param_name] == param_value
100
+
101
+ PARAMS_TO_IGNORE = [
102
+ "torch_dtype",
103
+ "_name_or_path",
104
+ "architectures",
105
+ "_use_default_values",
106
+ "_diffusers_version",
107
+ ]
108
+ for component_name, component in single_file_pipe.components.items():
109
+ if component_name in single_file_pipe._optional_components:
110
+ continue
111
+
112
+ # skip testing transformer based components here
113
+ # skip text encoders / safety checkers since they have already been tested
114
+ if component_name in ["text_encoder", "tokenizer", "safety_checker", "feature_extractor"]:
115
+ continue
116
+
117
+ assert component_name in pipe.components, f"single file {component_name} not found in pretrained pipeline"
118
+ assert isinstance(
119
+ component, pipe.components[component_name].__class__
120
+ ), f"single file {component.__class__.__name__} and pretrained {pipe.components[component_name].__class__.__name__} are not the same"
121
+
122
+ for param_name, param_value in component.config.items():
123
+ if param_name in PARAMS_TO_IGNORE:
124
+ continue
125
+
126
+ # Some pretrained configs will set upcast attention to None
127
+ # In single file loading it defaults to the value in the class __init__ which is False
128
+ if param_name == "upcast_attention" and pipe.components[component_name].config[param_name] is None:
129
+ pipe.components[component_name].config[param_name] = param_value
130
+
131
+ > assert (
132
+ pipe.components[component_name].config[param_name] == param_value
133
+ ), f"single file {param_name}: {param_value} differs from pretrained {pipe.components[component_name].config[param_name]}"
134
+ E AssertionError: single file sample_size: 512 differs from pretrained 256
135
+
136
+ tests/single_file/single_file_testing_utils.py:85: AssertionError
137
+ ----------------------------- Captured stderr call -----------------------------
138
+
139
+ Loading pipeline components...: 0%| | 0/6 [00:00<?, ?it/s]
140
+ Loading pipeline components...: 17%|█▋ | 1/6 [00:00<00:01, 3.44it/s]
141
+ Loading pipeline components...: 67%|██████▋ | 4/6 [00:00<00:00, 10.92it/s]
142
+ Loading pipeline components...: 100%|██████████| 6/6 [00:00<00:00, 9.23it/s]
143
+ Loading pipeline components...: 100%|██████████| 6/6 [00:00<00:00, 8.74it/s]
144
+
145
+ Fetching 11 files: 0%| | 0/11 [00:00<?, ?it/s]
146
+ Fetching 11 files: 100%|██████████| 11/11 [00:00<00:00, 97748.61it/s]
147
+
148
+ Loading pipeline components...: 0%| | 0/6 [00:00<?, ?it/s]
149
+ Loading pipeline components...: 50%|█████ | 3/6 [00:00<00:00, 12.40it/s]
150
+ Loading pipeline components...: 83%|████████▎ | 5/6 [00:00<00:00, 8.28it/s]
151
+ Loading pipeline components...: 100%|██████████| 6/6 [00:00<00:00, 9.69it/s]
152
+ _ StableDiffusionUpscalePipelineSingleFileSlowTests.test_single_file_components_with_original_config_local_files_only _
153
+
154
+ self = <tests.single_file.test_stable_diffusion_upscale_single_file.StableDiffusionUpscalePipelineSingleFileSlowTests testMethod=test_single_file_components_with_original_config_local_files_only>
155
+ pipe = StableDiffusionUpscalePipeline {
156
+ "_class_name": "StableDiffusionUpscalePipeline",
157
+ "_diffusers_version": "0.28.0.de...DConditionModel"
158
+ ],
159
+ "vae": [
160
+ "diffusers",
161
+ "AutoencoderKL"
162
+ ],
163
+ "watermarker": [
164
+ null,
165
+ null
166
+ ]
167
+ }
168
+
169
+ single_file_pipe = StableDiffusionUpscalePipeline {
170
+ "_class_name": "StableDiffusionUpscalePipeline",
171
+ "_diffusers_version": "0.28.0.de...DConditionModel"
172
+ ],
173
+ "vae": [
174
+ "diffusers",
175
+ "AutoencoderKL"
176
+ ],
177
+ "watermarker": [
178
+ null,
179
+ null
180
+ ]
181
+ }
182
+
183
+
184
+ def test_single_file_components_with_original_config_local_files_only(
185
+ self,
186
+ pipe=None,
187
+ single_file_pipe=None,
188
+ ):
189
+ pipe = pipe or self.pipeline_class.from_pretrained(self.repo_id, safety_checker=None)
190
+
191
+ # Not possible to infer this value when original config is provided
192
+ # we just pass it in here otherwise this test will fail
193
+ upcast_attention = pipe.unet.config.upcast_attention
194
+
195
+ with tempfile.TemporaryDirectory() as tmpdir:
196
+ ckpt_filename = self.ckpt_path.split("/")[-1]
197
+ local_ckpt_path = download_single_file_checkpoint(self.repo_id, ckpt_filename, tmpdir)
198
+ local_original_config = download_original_config(self.original_config, tmpdir)
199
+
200
+ single_file_pipe = single_file_pipe or self.pipeline_class.from_single_file(
201
+ local_ckpt_path,
202
+ original_config=local_original_config,
203
+ safety_checker=None,
204
+ upcast_attention=upcast_attention,
205
+ local_files_only=True,
206
+ )
207
+
208
+ > self._compare_component_configs(pipe, single_file_pipe)
209
+
210
+ tests/single_file/single_file_testing_utils.py:153:
211
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
212
+
213
+ self = <tests.single_file.test_stable_diffusion_upscale_single_file.StableDiffusionUpscalePipelineSingleFileSlowTests testMethod=test_single_file_components_with_original_config_local_files_only>
214
+ pipe = StableDiffusionUpscalePipeline {
215
+ "_class_name": "StableDiffusionUpscalePipeline",
216
+ "_diffusers_version": "0.28.0.de...DConditionModel"
217
+ ],
218
+ "vae": [
219
+ "diffusers",
220
+ "AutoencoderKL"
221
+ ],
222
+ "watermarker": [
223
+ null,
224
+ null
225
+ ]
226
+ }
227
+
228
+ single_file_pipe = StableDiffusionUpscalePipeline {
229
+ "_class_name": "StableDiffusionUpscalePipeline",
230
+ "_diffusers_version": "0.28.0.de...DConditionModel"
231
+ ],
232
+ "vae": [
233
+ "diffusers",
234
+ "AutoencoderKL"
235
+ ],
236
+ "watermarker": [
237
+ null,
238
+ null
239
+ ]
240
+ }
241
+
242
+
243
+ def _compare_component_configs(self, pipe, single_file_pipe):
244
+ for param_name, param_value in single_file_pipe.text_encoder.config.to_dict().items():
245
+ if param_name in ["torch_dtype", "architectures", "_name_or_path"]:
246
+ continue
247
+ assert pipe.text_encoder.config.to_dict()[param_name] == param_value
248
+
249
+ PARAMS_TO_IGNORE = [
250
+ "torch_dtype",
251
+ "_name_or_path",
252
+ "architectures",
253
+ "_use_default_values",
254
+ "_diffusers_version",
255
+ ]
256
+ for component_name, component in single_file_pipe.components.items():
257
+ if component_name in single_file_pipe._optional_components:
258
+ continue
259
+
260
+ # skip testing transformer based components here
261
+ # skip text encoders / safety checkers since they have already been tested
262
+ if component_name in ["text_encoder", "tokenizer", "safety_checker", "feature_extractor"]:
263
+ continue
264
+
265
+ assert component_name in pipe.components, f"single file {component_name} not found in pretrained pipeline"
266
+ assert isinstance(
267
+ component, pipe.components[component_name].__class__
268
+ ), f"single file {component.__class__.__name__} and pretrained {pipe.components[component_name].__class__.__name__} are not the same"
269
+
270
+ for param_name, param_value in component.config.items():
271
+ if param_name in PARAMS_TO_IGNORE:
272
+ continue
273
+
274
+ # Some pretrained configs will set upcast attention to None
275
+ # In single file loading it defaults to the value in the class __init__ which is False
276
+ if param_name == "upcast_attention" and pipe.components[component_name].config[param_name] is None:
277
+ pipe.components[component_name].config[param_name] = param_value
278
+
279
+ > assert (
280
+ pipe.components[component_name].config[param_name] == param_value
281
+ ), f"single file {param_name}: {param_value} differs from pretrained {pipe.components[component_name].config[param_name]}"
282
+ E AssertionError: single file sample_size: 512 differs from pretrained 256
283
+
284
+ tests/single_file/single_file_testing_utils.py:85: AssertionError
285
+ ----------------------------- Captured stderr call -----------------------------
286
+
287
+ Loading pipeline components...: 0%| | 0/6 [00:00<?, ?it/s]
288
+ Loading pipeline components...: 17%|█▋ | 1/6 [00:00<00:01, 3.42it/s]
289
+ Loading pipeline components...: 67%|██████▋ | 4/6 [00:00<00:00, 10.65it/s]
290
+ Loading pipeline components...: 100%|██████████| 6/6 [00:00<00:00, 8.83it/s]
291
+ Loading pipeline components...: 100%|██████████| 6/6 [00:00<00:00, 8.43it/s]
292
+
293
+ Loading pipeline components...: 0%| | 0/6 [00:00<?, ?it/s]
294
+ Loading pipeline components...: 50%|█████ | 3/6 [00:00<00:00, 15.78it/s]
295
+ Loading pipeline components...: 83%|████████▎ | 5/6 [00:00<00:00, 8.86it/s]
296
+ Loading pipeline components...: 100%|██████████| 6/6 [00:00<00:00, 10.50it/s]
297
+ =============================== warnings summary ===============================
298
+ tests/single_file/test_stable_diffusion_upscale_single_file.py::StableDiffusionUpscalePipelineSingleFileSlowTests::test_single_file_components_with_original_config
299
+ tests/single_file/test_stable_diffusion_upscale_single_file.py::StableDiffusionUpscalePipelineSingleFileSlowTests::test_single_file_components_with_original_config_local_files_only
300
+ /diffusers/src/diffusers/loaders/single_file_utils.py:604: FutureWarning: `image_size` is deprecated and will be removed in version 1.0.0. Configuring UNet2DConditionModel with the `upcast_attention` argument to `from_single_file`is deprecated and will be ignored in future versions.
301
+ deprecate("image_size", "1.0.0", deprecation_message)
302
+
303
+ -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
304
+ =========================== short test summary info ============================
305
+ FAILED tests/single_file/test_stable_diffusion_upscale_single_file.py::StableDiffusionUpscalePipelineSingleFileSlowTests::test_single_file_components_with_original_config
306
+ FAILED tests/single_file/test_stable_diffusion_upscale_single_file.py::StableDiffusionUpscalePipelineSingleFileSlowTests::test_single_file_components_with_original_config_local_files_only
307
+ ============== 2 failed, 5 passed, 2 warnings in 65.46s (0:01:05) ==============
text_outputs_single_file/test_stable_diffusion_xl_adapter_single_file_output.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ============================= test session starts ==============================
2
+ platform linux -- Python 3.8.10, pytest-8.2.0, pluggy-1.5.0
3
+ rootdir: /diffusers
4
+ configfile: pyproject.toml
5
+ plugins: xdist-3.6.1, timeout-2.3.1, requests-mock-1.10.0
6
+ collected 7 items
7
+
8
+ tests/single_file/test_stable_diffusion_xl_adapter_single_file.py ...... [ 85%]
9
+ . [100%]
10
+
11
+ ======================== 7 passed in 200.15s (0:03:20) =========================
text_outputs_single_file/test_stable_diffusion_xl_controlnet_single_file_output.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ============================= test session starts ==============================
2
+ platform linux -- Python 3.8.10, pytest-8.2.0, pluggy-1.5.0
3
+ rootdir: /diffusers
4
+ configfile: pyproject.toml
5
+ plugins: xdist-3.6.1, timeout-2.3.1, requests-mock-1.10.0
6
+ collected 7 items
7
+
8
+ tests/single_file/test_stable_diffusion_xl_controlnet_single_file.py ... [ 42%]
9
+ .... [100%]
10
+
11
+ ======================== 7 passed in 365.43s (0:06:05) =========================
text_outputs_single_file/test_stable_diffusion_xl_img2img_single_file_output.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ============================= test session starts ==============================
2
+ platform linux -- Python 3.8.10, pytest-8.2.0, pluggy-1.5.0
3
+ rootdir: /diffusers
4
+ configfile: pyproject.toml
5
+ plugins: xdist-3.6.1, timeout-2.3.1, requests-mock-1.10.0
6
+ collected 8 items
7
+
8
+ tests/single_file/test_stable_diffusion_xl_img2img_single_file.py ...... [ 75%]
9
+ .. [100%]
10
+
11
+ ======================== 8 passed in 283.12s (0:04:43) =========================
text_outputs_single_file/test_stable_diffusion_xl_instruct_pix2pix_output.txt ADDED
@@ -0,0 +1,423 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ============================= test session starts ==============================
2
+ platform linux -- Python 3.8.10, pytest-8.2.0, pluggy-1.5.0
3
+ rootdir: /diffusers
4
+ configfile: pyproject.toml
5
+ plugins: xdist-3.6.1, timeout-2.3.1, requests-mock-1.10.0
6
+ collected 1 item
7
+
8
+ tests/single_file/test_stable_diffusion_xl_instruct_pix2pix.py F [100%]
9
+
10
+ =================================== FAILURES ===================================
11
+ _ StableDiffusionXLInstructPix2PixPipeline.test_single_file_setting_cosxl_edit _
12
+
13
+ response = <Response [401]>, endpoint_name = None
14
+
15
+ def hf_raise_for_status(response: Response, endpoint_name: Optional[str] = None) -> None:
16
+ """
17
+ Internal version of `response.raise_for_status()` that will refine a
18
+ potential HTTPError. Raised exception will be an instance of `HfHubHTTPError`.
19
+
20
+ This helper is meant to be the unique method to raise_for_status when making a call
21
+ to the Hugging Face Hub.
22
+
23
+ Example:
24
+ ```py
25
+ import requests
26
+ from huggingface_hub.utils import get_session, hf_raise_for_status, HfHubHTTPError
27
+
28
+ response = get_session().post(...)
29
+ try:
30
+ hf_raise_for_status(response)
31
+ except HfHubHTTPError as e:
32
+ print(str(e)) # formatted message
33
+ e.request_id, e.server_message # details returned by server
34
+
35
+ # Complete the error message with additional information once it's raised
36
+ e.append_to_message("\n`create_commit` expects the repository to exist.")
37
+ raise
38
+ ```
39
+
40
+ Args:
41
+ response (`Response`):
42
+ Response from the server.
43
+ endpoint_name (`str`, *optional*):
44
+ Name of the endpoint that has been called. If provided, the error message
45
+ will be more complete.
46
+
47
+ <Tip warning={true}>
48
+
49
+ Raises when the request has failed:
50
+
51
+ - [`~utils.RepositoryNotFoundError`]
52
+ If the repository to download from cannot be found. This may be because it
53
+ doesn't exist, because `repo_type` is not set correctly, or because the repo
54
+ is `private` and you do not have access.
55
+ - [`~utils.GatedRepoError`]
56
+ If the repository exists but is gated and the user is not on the authorized
57
+ list.
58
+ - [`~utils.RevisionNotFoundError`]
59
+ If the repository exists but the revision couldn't be find.
60
+ - [`~utils.EntryNotFoundError`]
61
+ If the repository exists but the entry (e.g. the requested file) couldn't be
62
+ find.
63
+ - [`~utils.BadRequestError`]
64
+ If request failed with a HTTP 400 BadRequest error.
65
+ - [`~utils.HfHubHTTPError`]
66
+ If request failed for a reason not listed above.
67
+
68
+ </Tip>
69
+ """
70
+ try:
71
+ > response.raise_for_status()
72
+
73
+ /opt/venv/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py:304:
74
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
75
+
76
+ self = <Response [401]>
77
+
78
+ def raise_for_status(self):
79
+ """Raises :class:`HTTPError`, if one occurred."""
80
+
81
+ http_error_msg = ""
82
+ if isinstance(self.reason, bytes):
83
+ # We attempt to decode utf-8 first because some servers
84
+ # choose to localize their reason strings. If the string
85
+ # isn't utf-8, we fall back to iso-8859-1 for all other
86
+ # encodings. (See PR #3538)
87
+ try:
88
+ reason = self.reason.decode("utf-8")
89
+ except UnicodeDecodeError:
90
+ reason = self.reason.decode("iso-8859-1")
91
+ else:
92
+ reason = self.reason
93
+
94
+ if 400 <= self.status_code < 500:
95
+ http_error_msg = (
96
+ f"{self.status_code} Client Error: {reason} for url: {self.url}"
97
+ )
98
+
99
+ elif 500 <= self.status_code < 600:
100
+ http_error_msg = (
101
+ f"{self.status_code} Server Error: {reason} for url: {self.url}"
102
+ )
103
+
104
+ if http_error_msg:
105
+ > raise HTTPError(http_error_msg, response=self)
106
+ E requests.exceptions.HTTPError: 401 Client Error: Unauthorized for url: https://huggingface.co/stabilityai/cosxl/resolve/main/cosxl_edit.safetensors
107
+
108
+ /opt/venv/lib/python3.8/site-packages/requests/models.py:1021: HTTPError
109
+
110
+ The above exception was the direct cause of the following exception:
111
+
112
+ pretrained_model_name_or_path = 'stabilityai/cosxl'
113
+
114
+ @validate_hf_hub_args
115
+ def _get_model_file(
116
+ pretrained_model_name_or_path: Union[str, Path],
117
+ *,
118
+ weights_name: str,
119
+ subfolder: Optional[str] = None,
120
+ cache_dir: Optional[str] = None,
121
+ force_download: bool = False,
122
+ proxies: Optional[Dict] = None,
123
+ resume_download: bool = False,
124
+ local_files_only: bool = False,
125
+ token: Optional[str] = None,
126
+ user_agent: Optional[Union[Dict, str]] = None,
127
+ revision: Optional[str] = None,
128
+ commit_hash: Optional[str] = None,
129
+ local_dir: Optional[str] = None,
130
+ local_dir_use_symlinks: Optional[str] = "auto",
131
+ ):
132
+ pretrained_model_name_or_path = str(pretrained_model_name_or_path)
133
+ if os.path.isfile(pretrained_model_name_or_path):
134
+ return pretrained_model_name_or_path
135
+ elif os.path.isdir(pretrained_model_name_or_path):
136
+ if os.path.isfile(os.path.join(pretrained_model_name_or_path, weights_name)):
137
+ # Load from a PyTorch checkpoint
138
+ model_file = os.path.join(pretrained_model_name_or_path, weights_name)
139
+ return model_file
140
+ elif subfolder is not None and os.path.isfile(
141
+ os.path.join(pretrained_model_name_or_path, subfolder, weights_name)
142
+ ):
143
+ model_file = os.path.join(pretrained_model_name_or_path, subfolder, weights_name)
144
+ return model_file
145
+ else:
146
+ raise EnvironmentError(
147
+ f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}."
148
+ )
149
+ else:
150
+ # 1. First check if deprecated way of loading from branches is used
151
+ if (
152
+ revision in DEPRECATED_REVISION_ARGS
153
+ and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
154
+ and version.parse(version.parse(__version__).base_version) >= version.parse("0.22.0")
155
+ ):
156
+ try:
157
+ model_file = hf_hub_download(
158
+ pretrained_model_name_or_path,
159
+ filename=_add_variant(weights_name, revision),
160
+ cache_dir=cache_dir,
161
+ force_download=force_download,
162
+ proxies=proxies,
163
+ resume_download=resume_download,
164
+ local_files_only=local_files_only,
165
+ token=token,
166
+ user_agent=user_agent,
167
+ subfolder=subfolder,
168
+ revision=revision or commit_hash,
169
+ local_dir=local_dir,
170
+ local_dir_use_symlinks=local_dir_use_symlinks,
171
+ )
172
+ warnings.warn(
173
+ f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.",
174
+ FutureWarning,
175
+ )
176
+ return model_file
177
+ except: # noqa: E722
178
+ warnings.warn(
179
+ f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(weights_name, revision)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(weights_name, revision)}' so that the correct variant file can be added.",
180
+ FutureWarning,
181
+ )
182
+ try:
183
+ # 2. Load model file as usual
184
+ > model_file = hf_hub_download(
185
+ pretrained_model_name_or_path,
186
+ filename=weights_name,
187
+ cache_dir=cache_dir,
188
+ force_download=force_download,
189
+ proxies=proxies,
190
+ resume_download=resume_download,
191
+ local_files_only=local_files_only,
192
+ token=token,
193
+ user_agent=user_agent,
194
+ subfolder=subfolder,
195
+ revision=revision or commit_hash,
196
+ local_dir=local_dir,
197
+ local_dir_use_symlinks=local_dir_use_symlinks,
198
+ )
199
+
200
+ src/diffusers/utils/hub_utils.py:347:
201
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
202
+ /opt/venv/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py:119: in _inner_fn
203
+ return fn(*args, **kwargs)
204
+ /opt/venv/lib/python3.8/site-packages/huggingface_hub/file_download.py:1403: in hf_hub_download
205
+ raise head_call_error
206
+ /opt/venv/lib/python3.8/site-packages/huggingface_hub/file_download.py:1261: in hf_hub_download
207
+ metadata = get_hf_file_metadata(
208
+ /opt/venv/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py:119: in _inner_fn
209
+ return fn(*args, **kwargs)
210
+ /opt/venv/lib/python3.8/site-packages/huggingface_hub/file_download.py:1674: in get_hf_file_metadata
211
+ r = _request_wrapper(
212
+ /opt/venv/lib/python3.8/site-packages/huggingface_hub/file_download.py:369: in _request_wrapper
213
+ response = _request_wrapper(
214
+ /opt/venv/lib/python3.8/site-packages/huggingface_hub/file_download.py:393: in _request_wrapper
215
+ hf_raise_for_status(response)
216
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
217
+
218
+ response = <Response [401]>, endpoint_name = None
219
+
220
+ def hf_raise_for_status(response: Response, endpoint_name: Optional[str] = None) -> None:
221
+ """
222
+ Internal version of `response.raise_for_status()` that will refine a
223
+ potential HTTPError. Raised exception will be an instance of `HfHubHTTPError`.
224
+
225
+ This helper is meant to be the unique method to raise_for_status when making a call
226
+ to the Hugging Face Hub.
227
+
228
+ Example:
229
+ ```py
230
+ import requests
231
+ from huggingface_hub.utils import get_session, hf_raise_for_status, HfHubHTTPError
232
+
233
+ response = get_session().post(...)
234
+ try:
235
+ hf_raise_for_status(response)
236
+ except HfHubHTTPError as e:
237
+ print(str(e)) # formatted message
238
+ e.request_id, e.server_message # details returned by server
239
+
240
+ # Complete the error message with additional information once it's raised
241
+ e.append_to_message("\n`create_commit` expects the repository to exist.")
242
+ raise
243
+ ```
244
+
245
+ Args:
246
+ response (`Response`):
247
+ Response from the server.
248
+ endpoint_name (`str`, *optional*):
249
+ Name of the endpoint that has been called. If provided, the error message
250
+ will be more complete.
251
+
252
+ <Tip warning={true}>
253
+
254
+ Raises when the request has failed:
255
+
256
+ - [`~utils.RepositoryNotFoundError`]
257
+ If the repository to download from cannot be found. This may be because it
258
+ doesn't exist, because `repo_type` is not set correctly, or because the repo
259
+ is `private` and you do not have access.
260
+ - [`~utils.GatedRepoError`]
261
+ If the repository exists but is gated and the user is not on the authorized
262
+ list.
263
+ - [`~utils.RevisionNotFoundError`]
264
+ If the repository exists but the revision couldn't be find.
265
+ - [`~utils.EntryNotFoundError`]
266
+ If the repository exists but the entry (e.g. the requested file) couldn't be
267
+ find.
268
+ - [`~utils.BadRequestError`]
269
+ If request failed with a HTTP 400 BadRequest error.
270
+ - [`~utils.HfHubHTTPError`]
271
+ If request failed for a reason not listed above.
272
+
273
+ </Tip>
274
+ """
275
+ try:
276
+ response.raise_for_status()
277
+ except HTTPError as e:
278
+ error_code = response.headers.get("X-Error-Code")
279
+ error_message = response.headers.get("X-Error-Message")
280
+
281
+ if error_code == "RevisionNotFound":
282
+ message = f"{response.status_code} Client Error." + "\n\n" + f"Revision Not Found for url: {response.url}."
283
+ raise RevisionNotFoundError(message, response) from e
284
+
285
+ elif error_code == "EntryNotFound":
286
+ message = f"{response.status_code} Client Error." + "\n\n" + f"Entry Not Found for url: {response.url}."
287
+ raise EntryNotFoundError(message, response) from e
288
+
289
+ elif error_code == "GatedRepo":
290
+ message = (
291
+ f"{response.status_code} Client Error." + "\n\n" + f"Cannot access gated repo for url {response.url}."
292
+ )
293
+ > raise GatedRepoError(message, response) from e
294
+ E huggingface_hub.utils._errors.GatedRepoError: 401 Client Error. (Request ID: Root=1-6632f450-0c41a9502036e0320ec1517e;011ed4b7-adfa-4b7c-b58e-3f6e8a4eb44c)
295
+ E
296
+ E Cannot access gated repo for url https://huggingface.co/stabilityai/cosxl/resolve/main/cosxl_edit.safetensors.
297
+ E Access to model stabilityai/cosxl is restricted. You must be authenticated to access it.
298
+
299
+ /opt/venv/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py:321: GatedRepoError
300
+
301
+ During handling of the above exception, another exception occurred:
302
+
303
+ self = <tests.single_file.test_stable_diffusion_xl_instruct_pix2pix.StableDiffusionXLInstructPix2PixPipeline testMethod=test_single_file_setting_cosxl_edit>
304
+
305
+ def test_single_file_setting_cosxl_edit(self):
306
+ # Default is PNDM for this checkpoint
307
+ > pipe = self.pipeline_class.from_single_file(self.ckpt_path, config=self.repo_id, is_cosxl_edit=True)
308
+
309
+ tests/single_file/test_stable_diffusion_xl_instruct_pix2pix.py:49:
310
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
311
+ /opt/venv/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py:119: in _inner_fn
312
+ return fn(*args, **kwargs)
313
+ src/diffusers/loaders/single_file.py:386: in from_single_file
314
+ checkpoint = load_single_file_checkpoint(
315
+ src/diffusers/loaders/single_file_utils.py:308: in load_single_file_checkpoint
316
+ pretrained_model_link_or_path = _get_model_file(
317
+ /opt/venv/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py:119: in _inner_fn
318
+ return fn(*args, **kwargs)
319
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
320
+
321
+ pretrained_model_name_or_path = 'stabilityai/cosxl'
322
+
323
+ @validate_hf_hub_args
324
+ def _get_model_file(
325
+ pretrained_model_name_or_path: Union[str, Path],
326
+ *,
327
+ weights_name: str,
328
+ subfolder: Optional[str] = None,
329
+ cache_dir: Optional[str] = None,
330
+ force_download: bool = False,
331
+ proxies: Optional[Dict] = None,
332
+ resume_download: bool = False,
333
+ local_files_only: bool = False,
334
+ token: Optional[str] = None,
335
+ user_agent: Optional[Union[Dict, str]] = None,
336
+ revision: Optional[str] = None,
337
+ commit_hash: Optional[str] = None,
338
+ local_dir: Optional[str] = None,
339
+ local_dir_use_symlinks: Optional[str] = "auto",
340
+ ):
341
+ pretrained_model_name_or_path = str(pretrained_model_name_or_path)
342
+ if os.path.isfile(pretrained_model_name_or_path):
343
+ return pretrained_model_name_or_path
344
+ elif os.path.isdir(pretrained_model_name_or_path):
345
+ if os.path.isfile(os.path.join(pretrained_model_name_or_path, weights_name)):
346
+ # Load from a PyTorch checkpoint
347
+ model_file = os.path.join(pretrained_model_name_or_path, weights_name)
348
+ return model_file
349
+ elif subfolder is not None and os.path.isfile(
350
+ os.path.join(pretrained_model_name_or_path, subfolder, weights_name)
351
+ ):
352
+ model_file = os.path.join(pretrained_model_name_or_path, subfolder, weights_name)
353
+ return model_file
354
+ else:
355
+ raise EnvironmentError(
356
+ f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}."
357
+ )
358
+ else:
359
+ # 1. First check if deprecated way of loading from branches is used
360
+ if (
361
+ revision in DEPRECATED_REVISION_ARGS
362
+ and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
363
+ and version.parse(version.parse(__version__).base_version) >= version.parse("0.22.0")
364
+ ):
365
+ try:
366
+ model_file = hf_hub_download(
367
+ pretrained_model_name_or_path,
368
+ filename=_add_variant(weights_name, revision),
369
+ cache_dir=cache_dir,
370
+ force_download=force_download,
371
+ proxies=proxies,
372
+ resume_download=resume_download,
373
+ local_files_only=local_files_only,
374
+ token=token,
375
+ user_agent=user_agent,
376
+ subfolder=subfolder,
377
+ revision=revision or commit_hash,
378
+ local_dir=local_dir,
379
+ local_dir_use_symlinks=local_dir_use_symlinks,
380
+ )
381
+ warnings.warn(
382
+ f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.",
383
+ FutureWarning,
384
+ )
385
+ return model_file
386
+ except: # noqa: E722
387
+ warnings.warn(
388
+ f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(weights_name, revision)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(weights_name, revision)}' so that the correct variant file can be added.",
389
+ FutureWarning,
390
+ )
391
+ try:
392
+ # 2. Load model file as usual
393
+ model_file = hf_hub_download(
394
+ pretrained_model_name_or_path,
395
+ filename=weights_name,
396
+ cache_dir=cache_dir,
397
+ force_download=force_download,
398
+ proxies=proxies,
399
+ resume_download=resume_download,
400
+ local_files_only=local_files_only,
401
+ token=token,
402
+ user_agent=user_agent,
403
+ subfolder=subfolder,
404
+ revision=revision or commit_hash,
405
+ local_dir=local_dir,
406
+ local_dir_use_symlinks=local_dir_use_symlinks,
407
+ )
408
+ return model_file
409
+
410
+ except RepositoryNotFoundError:
411
+ > raise EnvironmentError(
412
+ f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
413
+ "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
414
+ "token having permission to this repo with `token` or log in with `huggingface-cli "
415
+ "login`."
416
+ )
417
+ E OSError: stabilityai/cosxl is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models'
418
+ E If this is a private repository, make sure to pass a token having permission to this repo with `token` or log in with `huggingface-cli login`.
419
+
420
+ src/diffusers/utils/hub_utils.py:365: OSError
421
+ =========================== short test summary info ============================
422
+ FAILED tests/single_file/test_stable_diffusion_xl_instruct_pix2pix.py::StableDiffusionXLInstructPix2PixPipeline::test_single_file_setting_cosxl_edit
423
+ ============================== 1 failed in 16.23s ==============================
text_outputs_single_file/test_stable_diffusion_xl_single_file_output.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ ============================= test session starts ==============================
2
+ platform linux -- Python 3.8.10, pytest-8.2.0, pluggy-1.5.0
3
+ rootdir: /diffusers
4
+ configfile: pyproject.toml
5
+ plugins: xdist-3.6.1, timeout-2.3.1, requests-mock-1.10.0
6
+ collected 7 items
7
+
8
+ tests/single_file/test_stable_diffusion_xl_single_file.py ....... [100%]
9
+
10
+ ========================= 7 passed in 62.63s (0:01:02) =========================