File size: 6,909 Bytes
96f6baa
 
 
 
 
 
 
 
 
513303f
 
 
96f6baa
 
 
 
 
 
 
 
 
513303f
96f6baa
 
 
 
 
 
 
cf685a8
4fd5fa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c961423
4fd5fa6
c961423
a144406
c961423
4fd5fa6
 
 
 
 
5e45656
 
4fd5fa6
 
5e45656
4fd5fa6
 
 
 
 
 
 
 
 
5e45656
4fd5fa6
 
 
5e45656
4fd5fa6
 
 
2bcc84f
4fd5fa6
 
 
 
 
 
5e45656
4fd5fa6
 
 
 
 
5e45656
4fd5fa6
 
 
5e45656
4fd5fa6
 
 
 
 
5e45656
4fd5fa6
 
 
5e45656
4fd5fa6
 
 
5e45656
4fd5fa6
 
 
 
 
5e45656
4fd5fa6
 
 
5e45656
4fd5fa6
 
 
5e45656
4fd5fa6
 
 
5e45656
4fd5fa6
 
 
5e45656
4fd5fa6
 
 
 
 
 
 
a144406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fd5fa6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
---
annotations_creators:
- other
language:
- sv
language_creators:
- other
multilinguality:
- monolingual
pretty_name: >-
  A standardized suite for evaluation and analysis of Swedish natural language
  understanding systems.
size_categories:
- unknown
source_datasets: []
task_categories:
- multiple-choice
- text-classification
- question-answering
- sentence-similarity
- token-classification
- summarization
task_ids:
- sentiment-analysis
- acceptability-classification
- closed-domain-qa
- word-sense-disambiguation
- coreference-resolution
---
# Dataset Card for Superlim-2

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [The official homepage of Språkbanken](https://spraakbanken.gu.se/resurser/superlim/)
- **Repository:**
- **Paper:**[SwedishGLUE – Towards a Swedish Test Set for Evaluating Natural Language Understanding Models](https://gup.ub.gu.se/publication/299130?lang=sv)
- **Leaderboard:** https://lab.kb.se/leaderboard/
- **Point of Contact:**[sb-info@svenska.gu.se](sb-info@svenska.gu.se)

### Dataset Summary

SuperLim 2.0 is a continuation of SuperLim 1.0, which aims for a standardized suite for evaluation and analysis of Swedish natural language understanding systems. The projects is inspired by the GLUE/SuperGLUE projects from which the name is derived: "lim" is the Swedish translation of "glue".   

Since Superlim 2.0 is a collection of datasets, we refer for information about dataset structure, creation, social impact etc. to the specific data cards or documentation sheets in the official GitHub repository: https://github.com/spraakbanken/SuperLim-2/

### Supported Tasks and Leaderboards

See our leaderboard: https://lab.kb.se/leaderboard/

### Languages

Swedish

## Dataset Structure

### Data Instances

See individual datasets: https://github.com/spraakbanken/SuperLim-2/

### Data Fields

See individual datasets: https://github.com/spraakbanken/SuperLim-2/

### Data Splits

Most datasets have a train, dev and test split. However, there are a few (`supersim`, `sweanalogy` and `swesat-synonyms`) who only have a train and test split. The diagnostic tasks `swediagnostics` and `swewinogender` only have a test split, but they could be evaluated on models trained on `swenli` since they are also NLI-based.

## Dataset Creation


### Curation Rationale

See individual datasets: https://github.com/spraakbanken/SuperLim-2/

### Source Data

#### Initial Data Collection and Normalization

See individual datasets: https://github.com/spraakbanken/SuperLim-2/

#### Who are the source language producers?

See individual datasets: https://github.com/spraakbanken/SuperLim-2/

### Annotations

#### Annotation process

See individual datasets: https://github.com/spraakbanken/SuperLim-2/

#### Who are the annotators?

See individual datasets: https://github.com/spraakbanken/SuperLim-2/

### Personal and Sensitive Information

See individual datasets: https://github.com/spraakbanken/SuperLim-2/

## Considerations for Using the Data

### Social Impact of Dataset

See individual datasets: https://github.com/spraakbanken/SuperLim-2/

### Discussion of Biases

See individual datasets: https://github.com/spraakbanken/SuperLim-2/

### Other Known Limitations

See individual datasets: https://github.com/spraakbanken/SuperLim-2/

### Dataset Curators

See individual datasets: https://github.com/spraakbanken/SuperLim-2/

### Licensing Information

All datasets constituting Superlim are available under Creative Commons licenses (CC BY 4.0, 8144 CC BY-SA 4.0, respectively).

### Citation Information

To cite as a whole, use the standard reference. If you use or reference individual resources, cite the references specific for these resources:
 
Standard reference:

Superlim: A Swedish Language Understanding Evaluation Benchmark (Berdicevskis et al., EMNLP 2023)

```

@inproceedings{berdicevskis-etal-2023-superlim,
    title = "Superlim: A {S}wedish Language Understanding Evaluation Benchmark",
    author = {Berdicevskis, Aleksandrs  and
      Bouma, Gerlof  and
      Kurtz, Robin  and
      Morger, Felix  and
      {\"O}hman, Joey  and
      Adesam, Yvonne  and
      Borin, Lars  and
      Dann{\'e}lls, Dana  and
      Forsberg, Markus  and
      Isbister, Tim  and
      Lindahl, Anna  and
      Malmsten, Martin  and
      Rekathati, Faton  and
      Sahlgren, Magnus  and
      Volodina, Elena  and
      B{\"o}rjeson, Love  and
      Hengchen, Simon  and
      Tahmasebi, Nina},
    editor = "Bouamor, Houda  and
      Pino, Juan  and
      Bali, Kalika",
    booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2023",
    address = "Singapore",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.emnlp-main.506",
    doi = "10.18653/v1/2023.emnlp-main.506",
    pages = "8137--8153",
    abstract = "We present Superlim, a multi-task NLP benchmark and analysis platform for evaluating Swedish language models, a counterpart to the English-language (Super)GLUE suite. We describe the dataset, the tasks, the leaderboard and report the baseline results yielded by a reference implementation. The tested models do not approach ceiling performance on any of the tasks, which suggests that Superlim is truly difficult, a desirable quality for a benchmark. We address methodological challenges, such as mitigating the Anglocentric bias when creating datasets for a less-resourced language; choosing the most appropriate measures; documenting the datasets and making the leaderboard convenient and transparent. We also highlight other potential usages of the dataset, such as, for instance, the evaluation of cross-lingual transfer learning.",
}


```

Thanks to [Felix Morger](https://github.com/felixhultin) for adding this dataset.