Felix commited on
Commit
6c3740d
·
1 Parent(s): 3bcb3c1

swemnli -> swenli

Browse files
data/{swemnli/swemnli_dev.jsonl → swenli/swenli_dev.jsonl} RENAMED
File without changes
data/{swemnli/swemnli_test.jsonl → swenli/swenli_test.jsonl} RENAMED
File without changes
data/{swemnli/swemnli_train.jsonl → swenli/swenli_train.jsonl} RENAMED
File without changes
superlim-2.py CHANGED
@@ -68,7 +68,7 @@ _SweFaq_DESCRIPTION = """\
68
  Vanliga frågor från svenska myndigheters webbsidor med svar i randomiserad ordning"""
69
  _SweFaq_CITATION = """\
70
  """
71
- _SweMNLI_DESCRIPTION = """\
72
  A textual inference/entailment problem set, derived from FraCas. The original English Fracas [1] was converted to html and edited by Bill MacCartney [2],
73
  and then automatically translated to Swedish by Peter Ljunglöf and Magdalena Siverbo [3]. The current tabular form of the set was created by Aleksandrs Berdicevskis
74
  by merging the Swedish and English versions and removing some of the problems. Finally, Lars Borin went through all the translations, correcting and Swedifying them manually.
@@ -124,7 +124,7 @@ _TASKS = {
124
  "swediagnostics": "swediagnostics",
125
  "swedn": "swedn",
126
  "swefaq": "swefaq",
127
- "swemnli": "swemnli",
128
  "swepar": "sweparaphrase",
129
  "swesat": "swesat-synonyms",
130
  "swesim_relatedness": "supersim-superlim-relatedness",
@@ -175,7 +175,7 @@ class SuperLim(datasets.GeneratorBasedBuilder):
175
  datasets.BuilderConfig(name="swediagnostics", version=VERSION, description=_SweDiag_DESCRIPTION),
176
  datasets.BuilderConfig(name="swedn", version=VERSION, description=_SweDN_DESCRIPTION),
177
  datasets.BuilderConfig(name="swefaq", version=VERSION, description=_SweFaq_DESCRIPTION),
178
- datasets.BuilderConfig(name="swemnli", version=VERSION, description=_SweMNLI_DESCRIPTION),
179
  datasets.BuilderConfig(name="swepar", version=VERSION, description=_SwePar_DESCRIPTION),
180
  datasets.BuilderConfig(name="swesat", version=VERSION, description=_SweSat_DESCRIPTION),
181
  datasets.BuilderConfig(name="swesim_relatedness", version=VERSION, description=_SweSim_DESCRIPTION),
@@ -252,7 +252,7 @@ class SuperLim(datasets.GeneratorBasedBuilder):
252
  "link": datasets.Value("string"),
253
  })
254
  })
255
- elif self.config.name == 'swemnli':
256
  features = datasets.Features({
257
  "id": datasets.Value("string"),
258
  "premise": datasets.Value("string"),
@@ -355,7 +355,7 @@ class SuperLim(datasets.GeneratorBasedBuilder):
355
  },
356
  )
357
  splits.append(split_test)
358
- if self.config.name in ("absabank-imm", "argumentation_sent", "dalaj-ged", "swefaq", "swewic", "swemnli", "swedn", "swepar"):
359
  data_dir_dev = dl_manager.download_and_extract(os.path.join(_URL,DATA_FOLDER,f"{_TASKS[self.config.name]}_dev.{file_format}"))
360
  split_dev = datasets.SplitGenerator(
361
  name=datasets.Split.VALIDATION,
@@ -366,7 +366,7 @@ class SuperLim(datasets.GeneratorBasedBuilder):
366
  )
367
  splits.append(split_dev)
368
  if self.config.name in ("absabank-imm", "argumentation_sent", "dalaj-ged", "swefaq",
369
- "swewic", "swemnli", "swedn", "swepar", "swesim_relatedness",
370
  "swesim_similarity", "swesat", "sweana"):
371
  data_dir_train = dl_manager.download_and_extract(os.path.join(_URL,DATA_FOLDER,f"{_TASKS[self.config.name]}_train.{file_format}"))
372
  split_train = datasets.SplitGenerator(
@@ -435,7 +435,7 @@ class SuperLim(datasets.GeneratorBasedBuilder):
435
  "label": row["label"],
436
  "meta": row['meta'],
437
  }
438
- elif self.config.name == "swemnli":
439
  yield key, {
440
  'id': row['id'],
441
  'premise': row['premise'],
 
68
  Vanliga frågor från svenska myndigheters webbsidor med svar i randomiserad ordning"""
69
  _SweFaq_CITATION = """\
70
  """
71
+ _SweNLI_DESCRIPTION = """\
72
  A textual inference/entailment problem set, derived from FraCas. The original English Fracas [1] was converted to html and edited by Bill MacCartney [2],
73
  and then automatically translated to Swedish by Peter Ljunglöf and Magdalena Siverbo [3]. The current tabular form of the set was created by Aleksandrs Berdicevskis
74
  by merging the Swedish and English versions and removing some of the problems. Finally, Lars Borin went through all the translations, correcting and Swedifying them manually.
 
124
  "swediagnostics": "swediagnostics",
125
  "swedn": "swedn",
126
  "swefaq": "swefaq",
127
+ "swenli": "swenli",
128
  "swepar": "sweparaphrase",
129
  "swesat": "swesat-synonyms",
130
  "swesim_relatedness": "supersim-superlim-relatedness",
 
175
  datasets.BuilderConfig(name="swediagnostics", version=VERSION, description=_SweDiag_DESCRIPTION),
176
  datasets.BuilderConfig(name="swedn", version=VERSION, description=_SweDN_DESCRIPTION),
177
  datasets.BuilderConfig(name="swefaq", version=VERSION, description=_SweFaq_DESCRIPTION),
178
+ datasets.BuilderConfig(name="swenli", version=VERSION, description=_SweNLI_DESCRIPTION),
179
  datasets.BuilderConfig(name="swepar", version=VERSION, description=_SwePar_DESCRIPTION),
180
  datasets.BuilderConfig(name="swesat", version=VERSION, description=_SweSat_DESCRIPTION),
181
  datasets.BuilderConfig(name="swesim_relatedness", version=VERSION, description=_SweSim_DESCRIPTION),
 
252
  "link": datasets.Value("string"),
253
  })
254
  })
255
+ elif self.config.name == 'swenli':
256
  features = datasets.Features({
257
  "id": datasets.Value("string"),
258
  "premise": datasets.Value("string"),
 
355
  },
356
  )
357
  splits.append(split_test)
358
+ if self.config.name in ("absabank-imm", "argumentation_sent", "dalaj-ged", "swefaq", "swewic", "swenli", "swedn", "swepar"):
359
  data_dir_dev = dl_manager.download_and_extract(os.path.join(_URL,DATA_FOLDER,f"{_TASKS[self.config.name]}_dev.{file_format}"))
360
  split_dev = datasets.SplitGenerator(
361
  name=datasets.Split.VALIDATION,
 
366
  )
367
  splits.append(split_dev)
368
  if self.config.name in ("absabank-imm", "argumentation_sent", "dalaj-ged", "swefaq",
369
+ "swewic", "swenli", "swedn", "swepar", "swesim_relatedness",
370
  "swesim_similarity", "swesat", "sweana"):
371
  data_dir_train = dl_manager.download_and_extract(os.path.join(_URL,DATA_FOLDER,f"{_TASKS[self.config.name]}_train.{file_format}"))
372
  split_train = datasets.SplitGenerator(
 
435
  "label": row["label"],
436
  "meta": row['meta'],
437
  }
438
+ elif self.config.name == "swenli":
439
  yield key, {
440
  'id': row['id'],
441
  'premise': row['premise'],