Felix
commited on
Commit
•
c7a5837
1
Parent(s):
1fb0864
add config builder file
Browse files- superlim-2.py +272 -0
superlim-2.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
|
3 |
+
_CITATION = """\
|
4 |
+
"""
|
5 |
+
|
6 |
+
# You can copy an official description
|
7 |
+
_DESCRIPTION = """\
|
8 |
+
"""
|
9 |
+
|
10 |
+
_HOMEPAGE = ""
|
11 |
+
|
12 |
+
_LICENSE = ""
|
13 |
+
|
14 |
+
_SUPERLIM_CITATION = """\
|
15 |
+
Yvonne Adesam, Aleksandrs Berdicevskis, Felix Morger (2020): SwedishGLUE – Towards a Swedish Test Set for Evaluating Natural Language Understanding Models BibTeX
|
16 |
+
[1] Original Absabank:
|
17 |
+
Jacobo Rouces, Lars Borin, Nina Tahmasebi (2020): Creating an Annotated Corpus for Aspect-Based Sentiment Analysis in Swedish, in Proceedings of the 5th conference in Digital Humanities in the Nordic Countries, Riga, Latvia, October 21-23, 2020. BibTeX
|
18 |
+
[2] DaLAJ:
|
19 |
+
Volodina, Elena, Yousuf Ali Mohammed, and Julia Klezl (2021). DaLAJ - a dataset for linguistic acceptability judgments for Swedish. In Proceedings of the 10th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2021). Linköping Electronic Conference Proceedings 177:3, s. 28-37. https://ep.liu.se/ecp/177/003/ecp2021177003.pdf
|
20 |
+
[3] Analogy:
|
21 |
+
Tosin Adewumi, Foteini Liwicki, Markus Liwicki. (2020). Corpora compared: The case of the Swedish Gigaword & Wikipedia corpora. In: Proceedings of the 8th SLTC, Gothenburg. arXiv preprint arXiv:2011.03281
|
22 |
+
[4] Swedish Test Set for SemEval 2020 Task 1:
|
23 |
+
Unsupervised Lexical Semantic Change Detection: Dominik Schlechtweg, Barbara McGillivray, Simon Hengchen, Haim Dubossarsky, Nina Tahmasebi (2020): SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection, in Proceedings of the Fourteenth Workshop on Semantic Evaluation (SemEval2020), Barcelona, Spain (Online), December 12, 2020. BibTeX
|
24 |
+
[5] Winogender:
|
25 |
+
Saga Hansson, Konstantinos Mavromatakis, Yvonne Adesam, Gerlof Bouma and Dana Dannélls (2021). The Swedish Winogender Dataset. In The 23rd Nordic Conference on Computational Linguistics (NoDaLiDa 2021), Reykjavik.
|
26 |
+
[6] SuperSim:
|
27 |
+
Hengchen, Simon and Tahmasebi, Nina (2021). SuperSim: a test set for word similarity and relatedness in Swedish. In The 23rd Nordic Conference on Computational Linguistics (NoDaLiDa 2021), Reykjavik. arXiv preprint arXiv:2014.05228
|
28 |
+
"""
|
29 |
+
|
30 |
+
_SUPERLIM_DESCRIPTION = """\
|
31 |
+
SuperLim, A standardized suite for evaluation and analysis of Swedish natural language understanding systems.
|
32 |
+
"""
|
33 |
+
_DaLAJ_DESCRIPTION = """\
|
34 |
+
Determine whether a sentence is correct Swedish or not.
|
35 |
+
"""
|
36 |
+
_DaLAJ_CITATION = """\
|
37 |
+
[1] Original Absabank:
|
38 |
+
Jacobo Rouces, Lars Borin, Nina Tahmasebi (2020): Creating an Annotated Corpus for Aspect-Based Sentiment Analysis in Swedish, in Proceedings of the 5th conference in Digital Humanities in the Nordic Countries, Riga, Latvia, October 21-23, 2020. BibTeX
|
39 |
+
[2] DaLAJ:
|
40 |
+
Volodina, Elena, Yousuf Ali Mohammed, and Julia Klezl (2021). DaLAJ - a dataset for linguistic acceptability judgments for Swedish. In Proceedings of the 10th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2021). Linköping Electronic Conference Proceedings 177:3, s. 28-37. https://ep.liu.se/ecp/177/003/ecp2021177003.pdf
|
41 |
+
"""
|
42 |
+
|
43 |
+
_SweAna_DESCRIPTION = """\
|
44 |
+
The Swedish analogy test set follows the format of the original Google version. However, it is bigger and balanced across the 2 major categories,
|
45 |
+
having a total of 20,638 samples, made up of 10,381 semantic and 10,257 syntactic samples. It is also roughly balanced across the syntactic subsections.
|
46 |
+
There are 5 semantic subsections and 6 syntactic subsections. The dataset was constructed, partly using the samples in the English version,
|
47 |
+
with the help of tools dedicated to Swedish translation and it was proof-read for corrections by two native speakers (with a percentage agreement of 98.93\%)."""
|
48 |
+
_SweAna_CITATION = """\
|
49 |
+
[1] Original Absabank:
|
50 |
+
Jacobo Rouces, Lars Borin, Nina Tahmasebi (2020): Creating an Annotated Corpus for Aspect-Based Sentiment Analysis in Swedish, in Proceedings of the 5th conference in Digital Humanities in the Nordic Countries, Riga, Latvia, October 21-23, 2020. BibTeX
|
51 |
+
"""
|
52 |
+
|
53 |
+
_SweDiag_DESCRIPTION = """\
|
54 |
+
Färdig preliminär översättning av SuperGLUE diagnostik. Datan innehåller alla ursprungliga annoterade satspar från SuperGLUE tillsammans
|
55 |
+
med deras svenska översättningar."""
|
56 |
+
_SweDiag_CITATION = """\
|
57 |
+
"""
|
58 |
+
_SweFaq_DESCRIPTION = """\
|
59 |
+
Vanliga frågor från svenska myndigheters webbsidor med svar i randomiserad ordning"""
|
60 |
+
_SweFaq_CITATION = """\
|
61 |
+
"""
|
62 |
+
_SweFracas_DESCRIPTION = """\
|
63 |
+
A textual inference/entailment problem set, derived from FraCas. The original English Fracas [1] was converted to html and edited by Bill MacCartney [2],
|
64 |
+
and then automatically translated to Swedish by Peter Ljunglöf and Magdalena Siverbo [3]. The current tabular form of the set was created by Aleksandrs Berdicevskis
|
65 |
+
by merging the Swedish and English versions and removing some of the problems. Finally, Lars Borin went through all the translations, correcting and Swedifying them manually.
|
66 |
+
As a result, many translations are rather liberal and diverge noticeably from the English original."""
|
67 |
+
_SweFracas_CITATION = """\
|
68 |
+
"""
|
69 |
+
_SwePar_DESCRIPTION = """\
|
70 |
+
SweParaphrase is a subset of the automatically translated Swedish Semantic Textual Similarity dataset (Isbister and Sahlgren, 2020).
|
71 |
+
It consists of 165 manually corrected Swedish sentence pairs paired with the original English sentences and their similarity scores
|
72 |
+
ranging between 0 (no meaning overlap) and 5 (meaning equivalence). These scores were taken from the English data, they were assigned
|
73 |
+
by Crowdsourcing through Mechanical Turk. Each sentence pair belongs to one genre (e.g. news, forums or captions).
|
74 |
+
The task is to determine how similar two sentences are."""
|
75 |
+
_SwePar_CITATION = """\
|
76 |
+
"""
|
77 |
+
_SweSat_DESCRIPTION = """\
|
78 |
+
The dataset provides a gold standard for Swedish word synonymy/definition. The test items are collected from the Swedish Scholastic
|
79 |
+
Aptitude Test (högskoleprovet), currently spanning the years 2006--2021 and 822 vocabulary test items. The task for the tested system
|
80 |
+
is to determine which synonym or definition of five alternatives is correct for each test item.
|
81 |
+
"""
|
82 |
+
_SweSat_CITATION = """\
|
83 |
+
"""
|
84 |
+
|
85 |
+
_SweSim_DESCRIPTION = """\
|
86 |
+
SuperSim is a large-scale similarity and relatedness test set for Swedish built with expert human judgments. The test set is composed of 1360 word-pairs independently judged for both relatedness and similarity by five annotators."""
|
87 |
+
|
88 |
+
_SweWgr_DESCRIPTION = """\
|
89 |
+
The SweWinogender test set is diagnostic dataset to measure gender bias in coreference resolution. It is modelled after the English Winogender benchmark,
|
90 |
+
and is released with reference statistics on the distribution of men and women between occupations and the association between gender and occupation in modern corpus material."""
|
91 |
+
|
92 |
+
_SweWsc_DESCRIPTION = """\
|
93 |
+
SweWinograd is a pronoun resolution test set, containing constructed items in the style of Winograd schema’s. The interpretation of the target pronouns is determined by (common sense)
|
94 |
+
reasoning and knowledge, and not by syntactic constraints, lexical distributional information or discourse structuring patterns.
|
95 |
+
The dataset contains 90 multiple choice with multiple correct answers test items."""
|
96 |
+
|
97 |
+
_SweWic_DESCRIPTION = """\
|
98 |
+
The Swedish Word-in-Context dataset provides a benchmark for evaluating distributional models of word meaning, in particular context-sensitive/dynamic models. Constructed following the principles of the (English)
|
99 |
+
Word-in-Context dataset, SweWiC consists of 1000 sentence pairs, where each sentence in a pair contains an occurence of a potentially ambiguous focus word specific to that pair. The question posed to the tested
|
100 |
+
system is whether these two occurrences represent instances of the same word sense. There are 500 same-sense pairs and 500 different-sense pairs."""
|
101 |
+
|
102 |
+
# TODO: Add link to the official dataset URLs here
|
103 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
104 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
105 |
+
_URL = "https://huggingface.co/datasets/sbx/superlim-2/tree/main/data/"
|
106 |
+
_TASKS = {
|
107 |
+
"absabank": "ABSAbank-lmm",
|
108 |
+
"dalaj": "DaLAJ",
|
109 |
+
"swesim_relatedness": "SuperSim_relatedness",
|
110 |
+
"swesim_similarity": "SuperSim_similarity",
|
111 |
+
"sweana": "SweAnalogy",
|
112 |
+
"swefaq": "SweFAQ",
|
113 |
+
"swepar": "SweParaphrase",
|
114 |
+
"swesat": "SweSAT-synonyms",
|
115 |
+
"swewic": "SweWIC"
|
116 |
+
}
|
117 |
+
|
118 |
+
|
119 |
+
class SuperLimConfig(datasets.BuilderConfig):
|
120 |
+
"""BuilderConfig for SuperLim."""
|
121 |
+
|
122 |
+
def __init__(self, features, data_url, citation, url, label_classes=("False", "True"), **kwargs):
|
123 |
+
"""BuilderConfig for SuperLim.
|
124 |
+
|
125 |
+
Args:
|
126 |
+
features: `list[string]`, list of the features that will appear in the
|
127 |
+
feature dict. Should not include "label".
|
128 |
+
data_url: `string`, url to download the zip file from.
|
129 |
+
citation: `string`, citation for the data set.
|
130 |
+
url: `string`, url for information about the data set.
|
131 |
+
label_classes: `list[string]`, the list of classes for the label if the
|
132 |
+
label is present as a string. Non-string labels will be cast to either
|
133 |
+
'False' or 'True'.
|
134 |
+
**kwargs: keyword arguments forwarded to super.
|
135 |
+
"""
|
136 |
+
# Version history:
|
137 |
+
# 1.0.2: Fixed non-nondeterminism in ReCoRD.
|
138 |
+
# 1.0.1: Change from the pre-release trial version of SuperLim (v1.9) to
|
139 |
+
# the full release (v2.0).
|
140 |
+
# 1.0.0: S3 (new shuffling, sharding and slicing mechanism).
|
141 |
+
# 0.0.2: Initial version.
|
142 |
+
super(SuperLimConfig, self).__init__(version=datasets.Version("2.0.0"), **kwargs)
|
143 |
+
self.features = features
|
144 |
+
self.label_classes = label_classes
|
145 |
+
self.data_url = data_url
|
146 |
+
self.citation = citation
|
147 |
+
self.url = url
|
148 |
+
|
149 |
+
class SuperLim(datasets.GeneratorBasedBuilder):
|
150 |
+
"""The SuperLim benchmark."""
|
151 |
+
|
152 |
+
VERSION = datasets.Version("2.0.0")
|
153 |
+
|
154 |
+
BUILDER_CONFIGS = [
|
155 |
+
datasets.BuilderConfig(name="absabank", version=VERSION, description=_DaLAJ_DESCRIPTION),
|
156 |
+
datasets.BuilderConfig(name="dalaj", version=VERSION, description=_DaLAJ_DESCRIPTION),
|
157 |
+
datasets.BuilderConfig(name="swesim_relatedness", version=VERSION, description=_SweSim_DESCRIPTION),
|
158 |
+
datasets.BuilderConfig(name="swesim_similarity", version=VERSION, description=_SweSim_DESCRIPTION),
|
159 |
+
datasets.BuilderConfig(name="sweana", version=VERSION, description=_SweAna_DESCRIPTION),
|
160 |
+
datasets.BuilderConfig(name="swefaq", version=VERSION, description=_SweFaq_DESCRIPTION),
|
161 |
+
datasets.BuilderConfig(name="swepar", version=VERSION, description=_SwePar_DESCRIPTION),
|
162 |
+
datasets.BuilderConfig(name="swesat", version=VERSION, description=_SweSat_DESCRIPTION),
|
163 |
+
datasets.BuilderConfig(name="swewic", version=VERSION, description=_SweWic_DESCRIPTION)
|
164 |
+
]
|
165 |
+
|
166 |
+
def _info(self):
|
167 |
+
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
168 |
+
if self.config.name == "dalaj": # This is the name of the configuration selected in BUILDER_CONFIGS above
|
169 |
+
features = datasets.Features(
|
170 |
+
{
|
171 |
+
"original_sentence": datasets.Value("string"),
|
172 |
+
"corrected_sentence": datasets.Value("string"),
|
173 |
+
"error_indices": datasets.Value("string"),
|
174 |
+
"corrected_indices": datasets.Value("string"),
|
175 |
+
"error_corr_pair": datasets.Value("string"),
|
176 |
+
"error_label": datasets.Value("string"),
|
177 |
+
"l1": datasets.Value("string"),
|
178 |
+
"approximate_level": datasets.Value("string"),
|
179 |
+
# These are the features of your dataset like images, labels ...
|
180 |
+
}
|
181 |
+
)
|
182 |
+
elif self.config.name == 'absabank':
|
183 |
+
features = datasets.Features(
|
184 |
+
{
|
185 |
+
"text": datasets.Value("string"),
|
186 |
+
"label": datasets.Value(dtype='float32')
|
187 |
+
}
|
188 |
+
)
|
189 |
+
elif self.config.name == "sweana":
|
190 |
+
features = datasets.Features(
|
191 |
+
{
|
192 |
+
"a": datasets.Value("string"),
|
193 |
+
"b": datasets.Value("string"),
|
194 |
+
"c": datasets.Value("string"),
|
195 |
+
"d": datasets.Value("string"),
|
196 |
+
"relation": datasets.Value("string"),
|
197 |
+
}
|
198 |
+
)
|
199 |
+
elif self.config.name == "swefaq":
|
200 |
+
features = datasets.Features(
|
201 |
+
{
|
202 |
+
"question": datasets.Value("string"),
|
203 |
+
"candidate_answer": datasets.Value("string"),
|
204 |
+
"correct_answer": datasets.Value("string"),
|
205 |
+
}
|
206 |
+
)
|
207 |
+
elif self.config.name == "swepar":
|
208 |
+
features = datasets.Features(
|
209 |
+
{
|
210 |
+
"sentence_1": datasets.Value("string"),
|
211 |
+
"sentence_2": datasets.Value("string"),
|
212 |
+
"similarity_score": datasets.Value("string"),
|
213 |
+
}
|
214 |
+
)
|
215 |
+
elif self.config.name == "swesat":
|
216 |
+
features = datasets.Features(
|
217 |
+
{
|
218 |
+
"target_item": datasets.Value("string"),
|
219 |
+
"answer_1": datasets.Value("string"),
|
220 |
+
"answer_2": datasets.Value("string"),
|
221 |
+
"answer_3": datasets.Value("string"),
|
222 |
+
"answer_4": datasets.Value("string"),
|
223 |
+
"answer_5": datasets.Value("string"),
|
224 |
+
}
|
225 |
+
)
|
226 |
+
elif self.config.name == "swesim_relatedness":
|
227 |
+
features = datasets.Features(
|
228 |
+
{
|
229 |
+
"word_1": datasets.Value("string"),
|
230 |
+
"word_2": datasets.Value("string"),
|
231 |
+
"relatedness": datasets.Value("string"),
|
232 |
+
}
|
233 |
+
)
|
234 |
+
elif self.config.name == "swesim_similarity":
|
235 |
+
features = datasets.Features(
|
236 |
+
{
|
237 |
+
"word_1": datasets.Value("string"),
|
238 |
+
"word_2": datasets.Value("string"),
|
239 |
+
"similarity": datasets.Value("string"),
|
240 |
+
}
|
241 |
+
)
|
242 |
+
elif self.config.name == "swewic":
|
243 |
+
features = datasets.Features(
|
244 |
+
{
|
245 |
+
"sentence_1": datasets.Value("string"),
|
246 |
+
"word_1": datasets.Value("string"),
|
247 |
+
"sentence_2": datasets.Value("string"),
|
248 |
+
"word_2": datasets.Value("string"),
|
249 |
+
"same_sense": datasets.Value("string"),
|
250 |
+
"start_1": datasets.Value("string"),
|
251 |
+
"start_2": datasets.Value("string"),
|
252 |
+
"end_1": datasets.Value("string"),
|
253 |
+
"end_2": datasets.Value("string"),
|
254 |
+
}
|
255 |
+
)
|
256 |
+
else:
|
257 |
+
raise ValueError(f"Subset {self.config.name} does not exist.")
|
258 |
+
return datasets.DatasetInfo(
|
259 |
+
# This is the description that will appear on the datasets page.
|
260 |
+
description=_DESCRIPTION,
|
261 |
+
# This defines the different columns of the dataset and their types
|
262 |
+
features=features, # Here define them above because they are different between the two configurations
|
263 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
264 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
265 |
+
# supervised_keys=("sentence", "label"),
|
266 |
+
# Homepage of the dataset for documentation
|
267 |
+
homepage=_HOMEPAGE,
|
268 |
+
# License for the dataset if available
|
269 |
+
license=_LICENSE,
|
270 |
+
# Citation for the dataset
|
271 |
+
citation=_CITATION,
|
272 |
+
)
|