Commit
·
0a6e041
0
Parent(s):
Update files from the datasets library (from 1.2.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.2.0
- .gitattributes +27 -0
- README.md +152 -0
- app_reviews.py +83 -0
- dataset_infos.json +1 -0
- dummy/0.0.0/dummy_data.zip +3 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- crowdsourced
|
4 |
+
language_creators:
|
5 |
+
- crowdsourced
|
6 |
+
languages:
|
7 |
+
- en
|
8 |
+
licenses:
|
9 |
+
- unknown
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- 100K<n<1M
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- text-scoring
|
18 |
+
task_ids:
|
19 |
+
- sentiment-scoring
|
20 |
+
---
|
21 |
+
|
22 |
+
# Dataset Card for [Dataset Name]
|
23 |
+
|
24 |
+
## Table of Contents
|
25 |
+
- [Dataset Description](#dataset-description)
|
26 |
+
- [Dataset Summary](#dataset-summary)
|
27 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
28 |
+
- [Languages](#languages)
|
29 |
+
- [Dataset Structure](#dataset-structure)
|
30 |
+
- [Data Instances](#data-instances)
|
31 |
+
- [Data Fields](#data-fields)
|
32 |
+
- [Data Splits](#data-splits)
|
33 |
+
- [Dataset Creation](#dataset-creation)
|
34 |
+
- [Curation Rationale](#curation-rationale)
|
35 |
+
- [Source Data](#source-data)
|
36 |
+
- [Annotations](#annotations)
|
37 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
38 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
39 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
40 |
+
- [Discussion of Biases](#discussion-of-biases)
|
41 |
+
- [Other Known Limitations](#other-known-limitations)
|
42 |
+
- [Additional Information](#additional-information)
|
43 |
+
- [Dataset Curators](#dataset-curators)
|
44 |
+
- [Licensing Information](#licensing-information)
|
45 |
+
- [Citation Information](#citation-information)
|
46 |
+
|
47 |
+
## Dataset Description
|
48 |
+
|
49 |
+
- **Homepage: [Home Page](https://github.com/sealuzh/user_quality)
|
50 |
+
- **Repository: [Repo Link](https://github.com/sealuzh/user_quality)
|
51 |
+
- **Paper: [Link](https://giograno.me/assets/pdf/workshop/wama17.pdf)
|
52 |
+
- **Leaderboard:
|
53 |
+
- **Point of Contact: [Darshan Gandhi](darshangandhi1151@gmail.com)
|
54 |
+
|
55 |
+
### Dataset Summary
|
56 |
+
|
57 |
+
It is a large dataset of Android applications belonging to 23 differentapps categories, which provides an overview of the types of feedback users report on the apps and documents the evolution of the related code metrics. The dataset contains about 395 applications of the F-Droid repository, including around 600 versions, 280,000 user reviews (extracted with specific text mining approaches)
|
58 |
+
|
59 |
+
### Supported Tasks and Leaderboards
|
60 |
+
|
61 |
+
The dataset we provide comprises 395 different apps from F-Droid repository, including code quality indicators of 629 versions of these
|
62 |
+
apps. It also encloses app reviews related to each of these versions, which have been automatically categorized classifying types of user feedback from a software maintenance and evolution perspective.
|
63 |
+
|
64 |
+
### Languages
|
65 |
+
|
66 |
+
The dataset is a monolingual dataset which has the messages English.
|
67 |
+
|
68 |
+
## Dataset Structure
|
69 |
+
|
70 |
+
### Data Instances
|
71 |
+
|
72 |
+
The dataset consists of a message in English.
|
73 |
+
|
74 |
+
{'package_name': 'com.mantz_it.rfanalyzer',
|
75 |
+
'review': "Great app! The new version now works on my Bravia Android TV which is great as it's right by my rooftop aerial cable. The scan feature would be useful...any ETA on when this will be available? Also the option to import a list of bookmarks e.g. from a simple properties file would be useful.",
|
76 |
+
'date': 'October 12 2016',
|
77 |
+
'star': 4}
|
78 |
+
|
79 |
+
### Data Fields
|
80 |
+
|
81 |
+
* package_name : Name of the Software Application Package
|
82 |
+
* review : Message of the user
|
83 |
+
* date : date when the user posted the review
|
84 |
+
* star : rating provied by the user for the application
|
85 |
+
|
86 |
+
### Data Splits
|
87 |
+
|
88 |
+
There is training data, with a total of : 288065
|
89 |
+
|
90 |
+
## Dataset Creation
|
91 |
+
|
92 |
+
### Curation Rationale
|
93 |
+
|
94 |
+
[More Information Needed]
|
95 |
+
|
96 |
+
### Source Data
|
97 |
+
|
98 |
+
#### Initial Data Collection and Normalization
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
#### Who are the source language producers?
|
103 |
+
|
104 |
+
[More Information Needed]
|
105 |
+
|
106 |
+
### Annotations
|
107 |
+
|
108 |
+
#### Annotation process
|
109 |
+
|
110 |
+
[More Information Needed]
|
111 |
+
|
112 |
+
#### Who are the annotators?
|
113 |
+
|
114 |
+
[More Information Needed]
|
115 |
+
|
116 |
+
### Personal and Sensitive Information
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
## Considerations for Using the Data
|
121 |
+
|
122 |
+
### Social Impact of Dataset
|
123 |
+
|
124 |
+
With the help of this dataset one can try to understand more about software applications and what are the views and opinions of the users about them. This helps to understand more about which type of software applications are prefeered by the users and how do these applications facilitate the user to help them solve their problems and issues.
|
125 |
+
|
126 |
+
### Discussion of Biases
|
127 |
+
|
128 |
+
The reviews are only for applications which are in the open-source software applications, the other sectors have not been considered here
|
129 |
+
|
130 |
+
### Other Known Limitations
|
131 |
+
|
132 |
+
[More Information Needed]
|
133 |
+
|
134 |
+
## Additional Information
|
135 |
+
|
136 |
+
### Dataset Curators
|
137 |
+
|
138 |
+
Giovanni Grano - (University of Zurich), Sebastiano Panichella - (University of Zurich), Andrea di Sorbo - (University of Sannio)
|
139 |
+
|
140 |
+
### Licensing Information
|
141 |
+
|
142 |
+
[More Information Needed]
|
143 |
+
|
144 |
+
### Citation Information
|
145 |
+
|
146 |
+
@InProceedings{Zurich Open Repository and
|
147 |
+
Archive:dataset,
|
148 |
+
title = {Software Applications User Reviews},
|
149 |
+
authors={Grano, Giovanni; Di Sorbo, Andrea; Mercaldo, Francesco; Visaggio, Corrado A; Canfora, Gerardo;
|
150 |
+
Panichella, Sebastiano},
|
151 |
+
year={2017}
|
152 |
+
}
|
app_reviews.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""Software Applications User Reviews"""
|
18 |
+
|
19 |
+
from __future__ import absolute_import, division, print_function
|
20 |
+
|
21 |
+
import csv
|
22 |
+
|
23 |
+
import datasets
|
24 |
+
|
25 |
+
|
26 |
+
_DESCRIPTION = """\
|
27 |
+
It is a large dataset of Android applications belonging to 23 differentapps categories, which provides an overview of the types of feedback users report on the apps and documents the evolution of the related code metrics. The dataset contains about 395 applications of the F-Droid repository, including around 600 versions, 280,000 user reviews (extracted with specific text mining approaches)
|
28 |
+
"""
|
29 |
+
|
30 |
+
_CITATION = """\
|
31 |
+
@InProceedings{Zurich Open Repository and
|
32 |
+
Archive:dataset,
|
33 |
+
title = {Software Applications User Reviews},
|
34 |
+
authors={Grano, Giovanni; Di Sorbo, Andrea; Mercaldo, Francesco; Visaggio, Corrado A; Canfora, Gerardo;
|
35 |
+
Panichella, Sebastiano},
|
36 |
+
year={2017}
|
37 |
+
}
|
38 |
+
"""
|
39 |
+
|
40 |
+
_TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/sealuzh/user_quality/master/csv_files/reviews.csv"
|
41 |
+
|
42 |
+
|
43 |
+
class AppReviews(datasets.GeneratorBasedBuilder):
|
44 |
+
"""Software Application Reviews by Users."""
|
45 |
+
|
46 |
+
def _info(self):
|
47 |
+
return datasets.DatasetInfo(
|
48 |
+
description=_DESCRIPTION,
|
49 |
+
features=datasets.Features(
|
50 |
+
{
|
51 |
+
"package_name": datasets.Value("string"),
|
52 |
+
"review": datasets.Value("string"),
|
53 |
+
"date": datasets.Value("string"),
|
54 |
+
"star": datasets.Value("int8"),
|
55 |
+
}
|
56 |
+
),
|
57 |
+
homepage="https://giograno.me/assets/pdf/workshop/wama17.pdf",
|
58 |
+
citation=_CITATION,
|
59 |
+
)
|
60 |
+
|
61 |
+
def _split_generators(self, dl_manager):
|
62 |
+
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
|
63 |
+
return [
|
64 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
|
65 |
+
]
|
66 |
+
|
67 |
+
def _generate_examples(self, filepath):
|
68 |
+
"""Generate Distaster Response Messages examples."""
|
69 |
+
with open(filepath, encoding="utf-8") as csv_file:
|
70 |
+
csv_reader = csv.reader(
|
71 |
+
csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True
|
72 |
+
)
|
73 |
+
next(csv_reader, None)
|
74 |
+
for id_, row in enumerate(csv_reader):
|
75 |
+
row = row[1:5]
|
76 |
+
(package_name, review, date, star) = row
|
77 |
+
|
78 |
+
yield id_, {
|
79 |
+
"package_name": (package_name),
|
80 |
+
"review": (review),
|
81 |
+
"date": (date),
|
82 |
+
"star": int(star),
|
83 |
+
}
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default": {"description": "It is a large dataset of Android applications belonging to 23 differentapps categories, which provides an overview of the types of feedback users report on the apps and documents the evolution of the related code metrics. The dataset contains about 395 applications of the F-Droid repository, including around 600 versions, 280,000 user reviews (extracted with specific text mining approaches)\n", "citation": "@InProceedings{Zurich Open Repository and\nArchive:dataset,\ntitle = {Software Applications User Reviews},\nauthors={Grano, Giovanni; Di Sorbo, Andrea; Mercaldo, Francesco; Visaggio, Corrado A; Canfora, Gerardo;\nPanichella, Sebastiano},\nyear={2017}\n}\n", "homepage": "https://giograno.me/assets/pdf/workshop/wama17.pdf", "license": "", "features": {"package_name": {"dtype": "string", "id": null, "_type": "Value"}, "review": {"dtype": "string", "id": null, "_type": "Value"}, "date": {"dtype": "string", "id": null, "_type": "Value"}, "star": {"dtype": "int8", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "app_reviews", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 32769079, "num_examples": 288065, "dataset_name": "app_reviews"}}, "download_checksums": {"https://raw.githubusercontent.com/sealuzh/user_quality/master/csv_files/reviews.csv": {"num_bytes": 42592679, "checksum": "6fdb54a7b17f4c886a9ef72dfa7380c7ead2cb2c0b416df9e152f9b48e53caf9"}}, "download_size": 42592679, "post_processing_size": null, "dataset_size": 32769079, "size_in_bytes": 75361758}}
|
dummy/0.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6927e67ccdf951d3e409e3976b5fd83fabe8ac8c5990157dbe6d9e8f5623073a
|
3 |
+
size 917
|