Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
488eaa9
·
1 Parent(s): 080ce36

Delete loading script

Browse files
Files changed (1) hide show
  1. app_reviews.py +0 -82
app_reviews.py DELETED
@@ -1,82 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """Software Applications User Reviews"""
18
-
19
-
20
- import csv
21
-
22
- import datasets
23
-
24
-
25
- _DESCRIPTION = """\
26
- It is a large dataset of Android applications belonging to 23 differentapps categories, which provides an overview of the types of feedback users report on the apps and documents the evolution of the related code metrics. The dataset contains about 395 applications of the F-Droid repository, including around 600 versions, 280,000 user reviews (extracted with specific text mining approaches)
27
- """
28
-
29
- _CITATION = """\
30
- @InProceedings{Zurich Open Repository and
31
- Archive:dataset,
32
- title = {Software Applications User Reviews},
33
- authors={Grano, Giovanni; Di Sorbo, Andrea; Mercaldo, Francesco; Visaggio, Corrado A; Canfora, Gerardo;
34
- Panichella, Sebastiano},
35
- year={2017}
36
- }
37
- """
38
-
39
- _TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/sealuzh/user_quality/master/csv_files/reviews.csv"
40
-
41
-
42
- class AppReviews(datasets.GeneratorBasedBuilder):
43
- """Software Application Reviews by Users."""
44
-
45
- def _info(self):
46
- return datasets.DatasetInfo(
47
- description=_DESCRIPTION,
48
- features=datasets.Features(
49
- {
50
- "package_name": datasets.Value("string"),
51
- "review": datasets.Value("string"),
52
- "date": datasets.Value("string"),
53
- "star": datasets.Value("int8"),
54
- }
55
- ),
56
- homepage="https://giograno.me/assets/pdf/workshop/wama17.pdf",
57
- citation=_CITATION,
58
- )
59
-
60
- def _split_generators(self, dl_manager):
61
- train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
62
- return [
63
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
64
- ]
65
-
66
- def _generate_examples(self, filepath):
67
- """Generate Distaster Response Messages examples."""
68
- with open(filepath, encoding="utf-8") as csv_file:
69
- csv_reader = csv.reader(
70
- csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True
71
- )
72
- next(csv_reader, None)
73
- for id_, row in enumerate(csv_reader):
74
- row = row[1:5]
75
- (package_name, review, date, star) = row
76
-
77
- yield id_, {
78
- "package_name": (package_name),
79
- "review": (review),
80
- "date": (date),
81
- "star": int(star),
82
- }