kote / kote.py
searle-j's picture
Create kote.py
82832ad
raw
history blame
3.7 kB
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import csv
import os
import datasets
_CITATION = """\
not yet
"""
_DESCRIPTION = """\
50k Korean online comments labeled for 44 emotion categories.
"""
_HOMEPAGE = "https://github.com/searle-j/KOTE"
_LICENSE = "MIT License"
_BASE_URL = "https://raw.githubusercontent.com/searle-j/KOTE/main/"
_LABELS = [
'๋ถˆํ‰/๋ถˆ๋งŒ',
'ํ™˜์˜/ํ˜ธ์˜',
'๊ฐ๋™/๊ฐํƒ„',
'์ง€๊ธ‹์ง€๊ธ‹',
'๊ณ ๋งˆ์›€',
'์Šฌํ””',
'ํ™”๋‚จ/๋ถ„๋…ธ',
'์กด๊ฒฝ',
'๊ธฐ๋Œ€๊ฐ',
'์šฐ์ญ๋Œ/๋ฌด์‹œํ•จ',
'์•ˆํƒ€๊นŒ์›€/์‹ค๋ง',
'๋น„์žฅํ•จ',
'์˜์‹ฌ/๋ถˆ์‹ ',
'๋ฟŒ๋“ฏํ•จ',
'ํŽธ์•ˆ/์พŒ์ ',
'์‹ ๊ธฐํ•จ/๊ด€์‹ฌ',
'์•„๊ปด์ฃผ๋Š”',
'๋ถ€๋„๋Ÿฌ์›€',
'๊ณตํฌ/๋ฌด์„œ์›€',
'์ ˆ๋ง',
'ํ•œ์‹ฌํ•จ',
'์—ญ๊ฒจ์›€/์ง•๊ทธ๋Ÿฌ์›€',
'์งœ์ฆ',
'์–ด์ด์—†์Œ',
'์—†์Œ',
'ํŒจ๋ฐฐ/์ž๊ธฐํ˜์˜ค',
'๊ท€์ฐฎ์Œ',
'ํž˜๋“ฆ/์ง€์นจ',
'์ฆ๊ฑฐ์›€/์‹ ๋‚จ',
'๊นจ๋‹ฌ์Œ',
'์ฃ„์ฑ…๊ฐ',
'์ฆ์˜ค/ํ˜์˜ค',
'ํ๋ญ‡ํ•จ(๊ท€์—ฌ์›€/์˜ˆ์จ)',
'๋‹นํ™ฉ/๋‚œ์ฒ˜',
'๊ฒฝ์•…',
'๋ถ€๋‹ด/์•ˆ_๋‚ดํ‚ด',
'์„œ๋Ÿฌ์›€',
'์žฌ๋ฏธ์—†์Œ',
'๋ถˆ์Œํ•จ/์—ฐ๋ฏผ',
'๋†€๋žŒ',
'ํ–‰๋ณต',
'๋ถˆ์•ˆ/๊ฑฑ์ •',
'๊ธฐ์จ',
'์•ˆ์‹ฌ/์‹ ๋ขฐ'
]
class KOTEConfig(datasets.BuilderConfig):
@property
def features(self):
if self.name == "dichotomized":
return {
"ID": datasets.Value("string"),
"text": datasets.Value("string"),
"labels": datasets.Sequence(datasets.ClassLabel(names=_LABELS)),
}
class KOTE(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [KOTEConfig(name="dichotomized")]
BUILDER_CONFIG_CLASS = KOTEConfig
DEFAULT_CONFIG_NAME = "dichotomized"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(self.config.features),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
if self.config.name=="dichotomized":
train_path = dl_manager.download_and_extract(os.path.join(_BASE_URL, "train.tsv"))
test_path = dl_manager.download_and_extract(os.path.join(_BASE_URL, "test.tsv"))
val_path = dl_manager.download_and_extract(os.path.join(_BASE_URL, "val.tsv"))
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": [train_path],}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": [test_path],}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": [val_path],}),
]
def _generate_examples(self, filepaths):
if self.config.name=="dichotomized":
for filepath in filepaths:
with open(filepath, mode="r", encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t", fieldnames=list(self.config.features.keys()))
for idx, row in enumerate(reader):
row["labels"] = [int(lab) for lab in row["labels"].split(",")]
yield idx, row