# Copyright 2020 HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import csv import os import datasets _CITATION = """\ @misc{jeon2022user, title={User Guide for KOTE: Korean Online Comments Emotions Dataset}, author={Duyoung Jeon and Junho Lee and Cheongtag Kim}, year={2022}, eprint={2205.05300}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _DESCRIPTION = """\ 50k Korean online comments labeled for 44 emotion categories. """ _HOMEPAGE = "https://github.com/searle-j/KOTE" _LICENSE = "MIT License" _BASE_URL = "https://raw.githubusercontent.com/searle-j/KOTE/main/" _LABELS = [ '불평/불만', '환영/호의', '감동/감탄', '지긋지긋', '고마움', '슬픔', '화남/분노', '존경', '기대감', '우쭐댐/무시함', '안타까움/실망', '비장함', '의심/불신', '뿌듯함', '편안/쾌적', '신기함/관심', '아껴주는', '부끄러움', '공포/무서움', '절망', '한심함', '역겨움/징그러움', '짜증', '어이없음', '없음', '패배/자기혐오', '귀찮음', '힘듦/지침', '즐거움/신남', '깨달음', '죄책감', '증오/혐오', '흐뭇함(귀여움/예쁨)', '당황/난처', '경악', '부담/안_내킴', '서러움', '재미없음', '불쌍함/연민', '놀람', '행복', '불안/걱정', '기쁨', '안심/신뢰' ] class KOTEConfig(datasets.BuilderConfig): @property def features(self): if self.name == "dichotomized": return { "ID": datasets.Value("string"), "text": datasets.Value("string"), "labels": datasets.Sequence(datasets.ClassLabel(names=_LABELS)), } class KOTE(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [KOTEConfig(name="dichotomized")] BUILDER_CONFIG_CLASS = KOTEConfig DEFAULT_CONFIG_NAME = "dichotomized" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features(self.config.features), homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): if self.config.name=="dichotomized": train_path = dl_manager.download_and_extract(os.path.join(_BASE_URL, "train.tsv")) test_path = dl_manager.download_and_extract(os.path.join(_BASE_URL, "test.tsv")) val_path = dl_manager.download_and_extract(os.path.join(_BASE_URL, "val.tsv")) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": [train_path],}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": [test_path],}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": [val_path],}), ] def _generate_examples(self, filepaths): if self.config.name=="dichotomized": for filepath in filepaths: with open(filepath, mode="r", encoding="utf-8") as f: reader = csv.DictReader(f, delimiter="\t", fieldnames=list(self.config.features.keys())) for idx, row in enumerate(reader): row["labels"] = [int(lab) for lab in row["labels"].split(",")] yield idx, row