{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "2FzBzmpBRkV3" }, "source": [ "# Checking Embeddings of Terms (Noun/Verb/Adj/etc.) from Tagged Wordnet Gloss\n", "\n", "I discovered there's a more active fork of wordnet and bumped this analysis over to that." ] }, { "cell_type": "code", "source": [ "!pip install datasets" ], "metadata": { "id": "K5C1kaWhXnJf", "outputId": "5b4045f0-9aa2-4579-d52c-4f45e1d67180", "colab": { "base_uri": "https://localhost:8080/" } }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Requirement already satisfied: datasets in /usr/local/lib/python3.10/dist-packages (2.18.0)\n", "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets) (3.13.1)\n", "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from datasets) (1.25.2)\n", "Requirement already satisfied: pyarrow>=12.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (14.0.2)\n", "Requirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.10/dist-packages (from datasets) (0.6)\n", "Requirement already satisfied: dill<0.3.9,>=0.3.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.3.8)\n", "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets) (1.5.3)\n", "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2.31.0)\n", "Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (4.66.2)\n", "Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from datasets) (3.4.1)\n", "Requirement already satisfied: multiprocess in /usr/local/lib/python3.10/dist-packages (from datasets) (0.70.16)\n", "Requirement already satisfied: fsspec[http]<=2024.2.0,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2023.6.0)\n", "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.9.3)\n", "Requirement already satisfied: huggingface-hub>=0.19.4 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.20.3)\n", "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from datasets) (24.0)\n", "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (6.0.1)\n", "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.1)\n", "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (23.2.0)\n", "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.4.1)\n", "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.0.5)\n", "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.9.4)\n", "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (4.0.3)\n", "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.19.4->datasets) (4.10.0)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (3.3.2)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (3.6)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (2.0.7)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (2024.2.2)\n", "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2.8.2)\n", "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2023.4)\n", "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.16.0)\n" ] } ] }, { "cell_type": "code", "source": [ "from datasets import load_dataset\n", "\n", "# Load the dataset\n", "dataset = load_dataset(\"jon-tow/open-english-wordnet-synset-2023\")" ], "metadata": { "id": "n12stD5MRnek" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "_D-Y5nf6RkV4", "outputId": "a205d054-7fab-477d-eddb-9be56942891c", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "{'@id': 'oewn-03159292-a',\n", " '@ili': 'i18097',\n", " '@members': 'oewn-avenged-a',\n", " '@partOfSpeech': 'a',\n", " '@lexfile': 'adj.ppl',\n", " 'Definition': 'for which vengeance has been taken',\n", " 'SynsetRelation': [],\n", " 'Example': 'an avenged injury',\n", " 'ILIDefinition': None,\n", " '@dc:source': None}" ] }, "metadata": {}, "execution_count": 40 } ], "source": [ "dataset['train'][0]" ] }, { "cell_type": "code", "source": [ "import pandas as pd" ], "metadata": { "id": "ioCtYnx7gDo6" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "df = pd.DataFrame(dataset['train'])" ], "metadata": { "id": "g6voyMIugE4c" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "df.head()" ], "metadata": { "id": "WNmdjublgIXz", "outputId": "90ff3c7f-7ac6-4f59-df79-c96b6a5f75ad", "colab": { "base_uri": "https://localhost:8080/", "height": 206 } }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " @id @ili @members @partOfSpeech \\\n", "0 oewn-03159292-a i18097 oewn-avenged-a a \n", "1 oewn-03159419-a i18098 oewn-unavenged-a a \n", "2 oewn-03159554-a i18099 oewn-beaten-a a \n", "3 oewn-03159654-a i18100 oewn-calibrated-a oewn-graduated-a a \n", "4 oewn-03159804-a i18101 oewn-cantering-a a \n", "\n", " @lexfile Definition SynsetRelation \\\n", "0 adj.ppl for which vengeance has been taken [] \n", "1 adj.ppl for which vengeance has not been taken [] \n", "2 adj.ppl formed or made thin by hammering [] \n", "3 adj.ppl marked with or divided into degrees [] \n", "4 adj.ppl riding at a gait between a trot and a gallop [] \n", "\n", " Example ILIDefinition @dc:source \n", "0 an avenged injury None None \n", "1 an unavenged murder None None \n", "2 beaten gold None None \n", "3 a calibrated thermometer None None \n", "4 the cantering soldiers None None " ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
@id@ili@members@partOfSpeech@lexfileDefinitionSynsetRelationExampleILIDefinition@dc:source
0oewn-03159292-ai18097oewn-avenged-aaadj.pplfor which vengeance has been taken[]an avenged injuryNoneNone
1oewn-03159419-ai18098oewn-unavenged-aaadj.pplfor which vengeance has not been taken[]an unavenged murderNoneNone
2oewn-03159554-ai18099oewn-beaten-aaadj.pplformed or made thin by hammering[]beaten goldNoneNone
3oewn-03159654-ai18100oewn-calibrated-a oewn-graduated-aaadj.pplmarked with or divided into degrees[]a calibrated thermometerNoneNone
4oewn-03159804-ai18101oewn-cantering-aaadj.pplriding at a gait between a trot and a gallop[]the cantering soldiersNoneNone
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "df" } }, "metadata": {}, "execution_count": 43 } ] }, { "cell_type": "markdown", "source": [ "Getting the @members into a reasonable format is about to take a bunch of cells and most of my patience for the day." ], "metadata": { "id": "vJM-9DJE1Oaq" } }, { "cell_type": "code", "source": [ "df.shape" ], "metadata": { "id": "L9zrnh6Urqco", "outputId": "1ace16a7-578a-4fa3-b474-5379d2a10248", "colab": { "base_uri": "https://localhost:8080/" } }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "(120135, 10)" ] }, "metadata": {}, "execution_count": 44 } ] }, { "cell_type": "code", "source": [ "df[['@members', '@partOfSpeech', '@lexfile']].head()" ], "metadata": { "id": "z8c4VmJ6lYwa", "outputId": "c0446594-dfcb-4681-95c9-0028efa128a1", "colab": { "base_uri": "https://localhost:8080/", "height": 206 } }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " @members @partOfSpeech @lexfile\n", "0 oewn-avenged-a a adj.ppl\n", "1 oewn-unavenged-a a adj.ppl\n", "2 oewn-beaten-a a adj.ppl\n", "3 oewn-calibrated-a oewn-graduated-a a adj.ppl\n", "4 oewn-cantering-a a adj.ppl" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
@members@partOfSpeech@lexfile
0oewn-avenged-aaadj.ppl
1oewn-unavenged-aaadj.ppl
2oewn-beaten-aaadj.ppl
3oewn-calibrated-a oewn-graduated-aaadj.ppl
4oewn-cantering-aaadj.ppl
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "summary": "{\n \"name\": \"df[['@members', '@partOfSpeech', '@lexfile']]\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"@members\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"oewn-unavenged-a\",\n \"oewn-cantering-a\",\n \"oewn-beaten-a\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"@partOfSpeech\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"a\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"@lexfile\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"adj.ppl\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {}, "execution_count": 45 } ] }, { "cell_type": "code", "source": [ "df = df[['@members', '@partOfSpeech', '@lexfile']]" ], "metadata": { "id": "bobEK-ZsllHr" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "pattern = r'^(\\w+-\\w+-\\w+ *)*$'\n", "\n", "matches_pattern = df['@members'].str.match(pattern)\n", "\n", "all_match_pattern = matches_pattern.all()\n", "all_match_pattern" ], "metadata": { "id": "LqERc6pcFyao", "outputId": "1fd3bad6-f639-49cf-ca84-a23003616511", "colab": { "base_uri": "https://localhost:8080/" } }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "False" ] }, "metadata": {}, "execution_count": 47 } ] }, { "cell_type": "code", "source": [ "members_not_matching_pattern = df[~matches_pattern]\n", "members_not_matching_pattern" ], "metadata": { "id": "jLvqtPRvGeqN", "outputId": "25982f3b-050e-427d-c953-e91fc7e1ed35", "colab": { "base_uri": "https://localhost:8080/", "height": 423 } }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " @members @partOfSpeech \\\n", "13 oewn-hand-held-a oewn-handheld-a a \n", "42 oewn-re-created-a a \n", "49 oewn-spray-dried-a a \n", "57 oewn-closed-captioned-a a \n", "116 oewn-plane_figure-n oewn-two-dimensional_figure-n n \n", "... ... ... \n", "119954 oewn-real-time_processing-n oewn-real-time_ope... n \n", "119976 oewn-reuptake-n oewn-re-uptake-n n \n", "120005 oewn-slump-n oewn-slack-n oewn-drop-off-n oewn... n \n", "120123 oewn-constant-volume_process-n oewn-isometric_... n \n", "120127 oewn-anti-selection-n oewn-adverse_selection-n n \n", "\n", " @lexfile \n", "13 adj.ppl \n", "42 adj.ppl \n", "49 adj.ppl \n", "57 adj.ppl \n", "116 noun.shape \n", "... ... \n", "119954 noun.process \n", "119976 noun.process \n", "120005 noun.process \n", "120123 noun.process \n", "120127 noun.process \n", "\n", "[6987 rows x 3 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
@members@partOfSpeech@lexfile
13oewn-hand-held-a oewn-handheld-aaadj.ppl
42oewn-re-created-aaadj.ppl
49oewn-spray-dried-aaadj.ppl
57oewn-closed-captioned-aaadj.ppl
116oewn-plane_figure-n oewn-two-dimensional_figure-nnnoun.shape
............
119954oewn-real-time_processing-n oewn-real-time_ope...nnoun.process
119976oewn-reuptake-n oewn-re-uptake-nnnoun.process
120005oewn-slump-n oewn-slack-n oewn-drop-off-n oewn...nnoun.process
120123oewn-constant-volume_process-n oewn-isometric_...nnoun.process
120127oewn-anti-selection-n oewn-adverse_selection-nnnoun.process
\n", "

6987 rows × 3 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", " \n", " \n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "members_not_matching_pattern", "summary": "{\n \"name\": \"members_not_matching_pattern\",\n \"rows\": 6987,\n \"fields\": [\n {\n \"column\": \"@members\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 6837,\n \"samples\": [\n \"oewn-ichthyolatry-n oewn-fish-worship-n\",\n \"oewn-record-breaker-n oewn-record-holder-n\",\n \"oewn-green-white-a oewn-greenish-white-a\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"@partOfSpeech\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"n\",\n \"r\",\n \"s\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"@lexfile\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 43,\n \"samples\": [\n \"noun.possession\",\n \"noun.substance\",\n \"noun.location\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {}, "execution_count": 48 } ] }, { "cell_type": "code", "source": [ "pattern = r'^(\\w+-[\\w_\\-.]+-\\w+ *)*$' # This took a couple of iterations not represented\n", "\n", "matches_pattern = df['@members'].str.match(pattern)\n", "\n", "all_match_pattern = matches_pattern.all()\n", "all_match_pattern" ], "metadata": { "id": "m8Jo9CRfOANO", "outputId": "ea4f54f7-1d25-4fc3-9ba8-70ae5000dae1", "colab": { "base_uri": "https://localhost:8080/" } }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "True" ] }, "metadata": {}, "execution_count": 49 } ] }, { "cell_type": "code", "source": [ "# I found this problem later on\n", "oddball = df['@members'].str.match('.*Gravenhage.*')\n", "oddball_member = df[oddball]['@members']" ], "metadata": { "id": "jsFdSy6qmhmG" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "oddball_member.iloc[0]" ], "metadata": { "id": "AzVbuHXGnSkK", "outputId": "ca09912d-6b62-405e-b4bb-54eb62d4ab70", "colab": { "base_uri": "https://localhost:8080/", "height": 35 } }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "'oewn-The_Hague-n oewn--ap-s_Gravenhage-n oewn-Den_Haag-n'" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "string" } }, "metadata": {}, "execution_count": 51 } ] }, { "cell_type": "code", "source": [ "df = df.assign(members=df['@members'].str.split()).explode('members')" ], "metadata": { "id": "J9uuPTGBqeVe" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "df.head()" ], "metadata": { "id": "rNbH6RL4rRPG", "outputId": "b37b227f-bfe7-4420-af53-613d1ddc204e", "colab": { "base_uri": "https://localhost:8080/", "height": 206 } }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " @members @partOfSpeech @lexfile \\\n", "0 oewn-avenged-a a adj.ppl \n", "1 oewn-unavenged-a a adj.ppl \n", "2 oewn-beaten-a a adj.ppl \n", "3 oewn-calibrated-a oewn-graduated-a a adj.ppl \n", "3 oewn-calibrated-a oewn-graduated-a a adj.ppl \n", "\n", " members \n", "0 oewn-avenged-a \n", "1 oewn-unavenged-a \n", "2 oewn-beaten-a \n", "3 oewn-calibrated-a \n", "3 oewn-graduated-a " ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
@members@partOfSpeech@lexfilemembers
0oewn-avenged-aaadj.pploewn-avenged-a
1oewn-unavenged-aaadj.pploewn-unavenged-a
2oewn-beaten-aaadj.pploewn-beaten-a
3oewn-calibrated-a oewn-graduated-aaadj.pploewn-calibrated-a
3oewn-calibrated-a oewn-graduated-aaadj.pploewn-graduated-a
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "df" } }, "metadata": {}, "execution_count": 53 } ] }, { "cell_type": "code", "source": [ "df.shape" ], "metadata": { "id": "TTdfz_HkrT4r", "outputId": "35d0ad6f-1b81-4eb6-988d-effd68e5e4b4", "colab": { "base_uri": "https://localhost:8080/" } }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "(212071, 4)" ] }, "metadata": {}, "execution_count": 54 } ] }, { "cell_type": "code", "source": [ "prefixes = df['members'].str.split('-', expand=True)[0]\n", "prefix_freq = prefixes.value_counts().reset_index()\n", "prefix_freq.columns = ['Prefix', 'Frequency']\n", "\n", "prefix_freq = prefix_freq.sort_values(by='Frequency', ascending=False)\n", "\n", "print(prefix_freq)" ], "metadata": { "id": "A6zydv3gq4IZ", "outputId": "ea147541-f0c2-4dcc-f51c-1060507ab527", "colab": { "base_uri": "https://localhost:8080/" } }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " Prefix Frequency\n", "0 oewn 212071\n" ] } ] }, { "cell_type": "code", "source": [ "to_remove = 'oewn-'\n", "\n", "df['members'] = df['members'].apply(lambda x: x.replace(to_remove, '') if x.startswith(to_remove) else x)" ], "metadata": { "id": "orcYSJC-rL_d" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "prefixes = df['members'].str.split('-', expand=True)[0]\n", "prefix_freq = prefixes.value_counts().reset_index()\n", "prefix_freq.columns = ['Prefix', 'Frequency']\n", "\n", "prefix_freq = prefix_freq.sort_values(by='Frequency', ascending=False)\n", "\n", "print(prefix_freq)" ], "metadata": { "id": "Zne276Jardwg", "outputId": "b0d9aacb-2504-4e66-96cb-f8b8d4d72ea3", "colab": { "base_uri": "https://localhost:8080/" } }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " Prefix Frequency\n", "0 self 252\n", "1 high 102\n", "2 well 98\n", "3 one 85\n", "4 cut 79\n", "... ... ...\n", "66494 CIA 1\n", "66493 National_Institute_of_Standards_and_Technology 1\n", "66492 Counterterrorist_Center 1\n", "66491 Nonproliferation_Center 1\n", "145809 grammatical_cohesion 1\n", "\n", "[145810 rows x 2 columns]\n" ] } ] }, { "cell_type": "code", "source": [ "# Check for values starting with \"-\"\n", "values_starting_with_dash = df[df['members'].str.startswith('-')]\n", "\n", "# Display the values starting with \"-\"\n", "print(values_starting_with_dash)" ], "metadata": { "id": "sk2wdpTRsKhT", "outputId": "e058e104-1b4d-463e-e046-8a550f8984c6", "colab": { "base_uri": "https://localhost:8080/" } }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " @members @partOfSpeech \\\n", "81633 oewn-The_Hague-n oewn--ap-s_Gravenhage-n oewn-... n \n", "106115 oewn-between-r oewn--ap-tween-r r \n", "107858 oewn-between_decks-r oewn--ap-tween_decks-r r \n", "114349 oewn-hood-n oewn--ap-hood-n n \n", "\n", " @lexfile members \n", "81633 noun.location -ap-s_Gravenhage-n \n", "106115 adv.all -ap-tween-r \n", "107858 adv.all -ap-tween_decks-r \n", "114349 noun.group -ap-hood-n \n" ] } ] }, { "cell_type": "code", "source": [ "df.head()" ], "metadata": { "id": "I1ihnJ0RrmHy", "outputId": "f3047e65-2191-4286-fd7d-1502aaab8842", "colab": { "base_uri": "https://localhost:8080/", "height": 206 } }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " @members @partOfSpeech @lexfile members\n", "0 oewn-avenged-a a adj.ppl avenged-a\n", "1 oewn-unavenged-a a adj.ppl unavenged-a\n", "2 oewn-beaten-a a adj.ppl beaten-a\n", "3 oewn-calibrated-a oewn-graduated-a a adj.ppl calibrated-a\n", "3 oewn-calibrated-a oewn-graduated-a a adj.ppl graduated-a" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
@members@partOfSpeech@lexfilemembers
0oewn-avenged-aaadj.pplavenged-a
1oewn-unavenged-aaadj.pplunavenged-a
2oewn-beaten-aaadj.pplbeaten-a
3oewn-calibrated-a oewn-graduated-aaadj.pplcalibrated-a
3oewn-calibrated-a oewn-graduated-aaadj.pplgraduated-a
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "df" } }, "metadata": {}, "execution_count": 59 } ] }, { "cell_type": "code", "source": [ "df['members'] = df['members'].apply(lambda x: x[4:] if x.startswith('-ap-') else x)" ], "metadata": { "id": "-6a_qlCUsvh4" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "df.drop(columns=['@members'], inplace=True)" ], "metadata": { "id": "SXHfgstpsyJi" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "suffixes = df['members'].str.split('-').str[-1]\n", "\n", "# Count frequencies of suffixes\n", "suffix_freq = suffixes.value_counts().reset_index()\n", "suffix_freq.columns = ['Suffix', 'Frequency']\n", "\n", "# Sort by frequency\n", "suffix_freq = suffix_freq.sort_values(by='Frequency', ascending=False)\n", "\n", "# Display suffixes ordered by frequency\n", "print(suffix_freq[:40])" ], "metadata": { "id": "m3qrn1yrtDHT", "outputId": "c410f569-75dd-4de3-a906-cf5a775be230", "colab": { "base_uri": "https://localhost:8080/" } }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " Suffix Frequency\n", "0 n 151001\n", "1 a 30150\n", "2 v 25098\n", "3 r 5595\n", "4 1 146\n", "5 2 69\n", "6 s 12\n" ] } ] }, { "cell_type": "code", "source": [ "filtered_df = df[df['members'].str.endswith(('1', '2', 's'))]\n", "\n", "print(filtered_df)" ], "metadata": { "id": "zZf0TzcLxKhe", "outputId": "b3e6d6fe-6407-42d0-9b09-e4b4506cb646", "colab": { "base_uri": "https://localhost:8080/" } }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " @partOfSpeech @lexfile members\n", "286 n noun.shape lead-n-1\n", "301 n noun.shape bow-n-1\n", "325 n noun.shape tower-n-1\n", "782 s adj.all panelled-s\n", "2303 s adj.all centre-s\n", "... ... ... ...\n", "117472 v verb.body tear-v-2\n", "117596 v verb.body recover-v-1\n", "118299 v verb.communication bow-v-1\n", "118397 v verb.communication bow-v-1\n", "118473 v verb.communication whoop-v-1\n", "\n", "[227 rows x 3 columns]\n" ] } ] }, { "cell_type": "code", "source": [ "df['members'] = df['members'].apply(lambda x: x.replace('-ap-', \"'\")) # They use this for apostrophe for some reason, probably because it was stored as yaml" ], "metadata": { "id": "LRCd0Zy_trIB" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# List of suffixes to remove\n", "suffixes_to_remove = ['-n', '-a', '-v', '-r', '-1', '-2', '-s']\n", "\n", "# Function to remove suffixes\n", "def remove_suffixes(member):\n", " # Iterate until no suffixes are left\n", " while any(member.endswith(suffix) for suffix in suffixes_to_remove):\n", " for suffix in suffixes_to_remove:\n", " if member.endswith(suffix):\n", " member = member[:-len(suffix)] # Remove the suffix\n", " return member\n", "\n", "# Apply the function to each member in the DataFrame\n", "df['members'] = df['members'].apply(remove_suffixes)\n", "\n", "# Display the updated DataFrame\n", "df.head()" ], "metadata": { "id": "_dmFfqOwx3X4", "outputId": "94b513b4-31e0-4cb8-8f87-97ca2e656a19", "colab": { "base_uri": "https://localhost:8080/", "height": 206 } }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " @partOfSpeech @lexfile members\n", "0 a adj.ppl avenged\n", "1 a adj.ppl unavenged\n", "2 a adj.ppl beaten\n", "3 a adj.ppl calibrated\n", "3 a adj.ppl graduated" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
@partOfSpeech@lexfilemembers
0aadj.pplavenged
1aadj.pplunavenged
2aadj.pplbeaten
3aadj.pplcalibrated
3aadj.pplgraduated
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "df" } }, "metadata": {}, "execution_count": 65 } ] }, { "cell_type": "code", "source": [ "df['members'] = df['members'].apply(lambda x: \" \".join(x.split(\"_\")))" ], "metadata": { "id": "1XbVExgWwaVo" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "df.head()" ], "metadata": { "id": "e4u-FcGRwkbM", "outputId": "f842eccc-d7c3-4479-e7ed-12ddfe0d6afb", "colab": { "base_uri": "https://localhost:8080/", "height": 206 } }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " @partOfSpeech @lexfile members\n", "0 a adj.ppl avenged\n", "1 a adj.ppl unavenged\n", "2 a adj.ppl beaten\n", "3 a adj.ppl calibrated\n", "3 a adj.ppl graduated" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
@partOfSpeech@lexfilemembers
0aadj.pplavenged
1aadj.pplunavenged
2aadj.pplbeaten
3aadj.pplcalibrated
3aadj.pplgraduated
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "df" } }, "metadata": {}, "execution_count": 67 } ] }, { "cell_type": "code", "source": [ "pd.get_dummies(df['@partOfSpeech'])" ], "metadata": { "id": "3VmUnWJel5CK", "outputId": "ee86f84b-2af6-4be2-e251-1d46fa792139", "colab": { "base_uri": "https://localhost:8080/", "height": 423 } }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " a n r s v\n", "0 1 0 0 0 0\n", "1 1 0 0 0 0\n", "2 1 0 0 0 0\n", "3 1 0 0 0 0\n", "3 1 0 0 0 0\n", "... .. .. .. .. ..\n", "120130 0 1 0 0 0\n", "120131 0 1 0 0 0\n", "120132 0 1 0 0 0\n", "120133 0 1 0 0 0\n", "120134 0 1 0 0 0\n", "\n", "[212071 rows x 5 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
anrsv
010000
110000
210000
310000
310000
..................
12013001000
12013101000
12013201000
12013301000
12013401000
\n", "

212071 rows × 5 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe" } }, "metadata": {}, "execution_count": 68 } ] }, { "cell_type": "code", "source": [ "pd.get_dummies(df['@lexfile'])" ], "metadata": { "id": "-ypW9xpkmC1W", "outputId": "f09691b9-0d4c-4785-cdc5-30b76c5b803e", "colab": { "base_uri": "https://localhost:8080/", "height": 443 } }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " adj.all adj.pert adj.ppl adv.all noun.Tops noun.act noun.animal \\\n", "0 0 0 1 0 0 0 0 \n", "1 0 0 1 0 0 0 0 \n", "2 0 0 1 0 0 0 0 \n", "3 0 0 1 0 0 0 0 \n", "3 0 0 1 0 0 0 0 \n", "... ... ... ... ... ... ... ... \n", "120130 0 0 0 0 0 0 0 \n", "120131 0 0 0 0 0 0 0 \n", "120132 0 0 0 0 0 0 0 \n", "120133 0 0 0 0 0 0 0 \n", "120134 0 0 0 0 0 0 0 \n", "\n", " noun.artifact noun.attribute noun.body ... verb.consumption \\\n", "0 0 0 0 ... 0 \n", "1 0 0 0 ... 0 \n", "2 0 0 0 ... 0 \n", "3 0 0 0 ... 0 \n", "3 0 0 0 ... 0 \n", "... ... ... ... ... ... \n", "120130 0 0 0 ... 0 \n", "120131 0 0 0 ... 0 \n", "120132 0 0 0 ... 0 \n", "120133 0 0 0 ... 0 \n", "120134 0 0 0 ... 0 \n", "\n", " verb.contact verb.creation verb.emotion verb.motion \\\n", "0 0 0 0 0 \n", "1 0 0 0 0 \n", "2 0 0 0 0 \n", "3 0 0 0 0 \n", "3 0 0 0 0 \n", "... ... ... ... ... \n", "120130 0 0 0 0 \n", "120131 0 0 0 0 \n", "120132 0 0 0 0 \n", "120133 0 0 0 0 \n", "120134 0 0 0 0 \n", "\n", " verb.perception verb.possession verb.social verb.stative \\\n", "0 0 0 0 0 \n", "1 0 0 0 0 \n", "2 0 0 0 0 \n", "3 0 0 0 0 \n", "3 0 0 0 0 \n", "... ... ... ... ... \n", "120130 0 0 0 0 \n", "120131 0 0 0 0 \n", "120132 0 0 0 0 \n", "120133 0 0 0 0 \n", "120134 0 0 0 0 \n", "\n", " verb.weather \n", "0 0 \n", "1 0 \n", "2 0 \n", "3 0 \n", "3 0 \n", "... ... \n", "120130 0 \n", "120131 0 \n", "120132 0 \n", "120133 0 \n", "120134 0 \n", "\n", "[212071 rows x 45 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
adj.alladj.pertadj.ppladv.allnoun.Topsnoun.actnoun.animalnoun.artifactnoun.attributenoun.body...verb.consumptionverb.contactverb.creationverb.emotionverb.motionverb.perceptionverb.possessionverb.socialverb.stativeverb.weather
00010000000...0000000000
10010000000...0000000000
20010000000...0000000000
30010000000...0000000000
30010000000...0000000000
..................................................................
1201300000000000...0000000000
1201310000000000...0000000000
1201320000000000...0000000000
1201330000000000...0000000000
1201340000000000...0000000000
\n", "

212071 rows × 45 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe" } }, "metadata": {}, "execution_count": 69 } ] }, { "cell_type": "code", "source": [ "df_to_upload = pd.concat([df['members'], pd.get_dummies(df['@partOfSpeech'])], axis=1)\n", "df_to_upload = pd.concat([df_to_upload, pd.get_dummies(df['@lexfile'])], axis=1)" ], "metadata": { "id": "OC2_nyEpE-DS" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "tC1ZbcL9RkV6", "colab": { "base_uri": "https://localhost:8080/", "height": 496 }, "outputId": "f6ca30d8-2bca-447f-c60f-6126381d6e74" }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " members a n r s v adj.all adj.pert adj.ppl \\\n", "0 avenged 1 0 0 0 0 0 0 1 \n", "1 unavenged 1 0 0 0 0 0 0 1 \n", "2 beaten 1 0 0 0 0 0 0 1 \n", "3 calibrated 1 0 0 0 0 0 0 1 \n", "3 graduated 1 0 0 0 0 0 0 1 \n", "... ... .. .. .. .. .. ... ... ... \n", "120130 bromoil process 0 1 0 0 0 0 0 0 \n", "120131 interfixation 0 1 0 0 0 0 0 0 \n", "120132 consonant mutation 0 1 0 0 0 0 0 0 \n", "120133 cohesion 0 1 0 0 0 0 0 0 \n", "120134 grammatical cohesion 0 1 0 0 0 0 0 0 \n", "\n", " adv.all ... verb.consumption verb.contact verb.creation \\\n", "0 0 ... 0 0 0 \n", "1 0 ... 0 0 0 \n", "2 0 ... 0 0 0 \n", "3 0 ... 0 0 0 \n", "3 0 ... 0 0 0 \n", "... ... ... ... ... ... \n", "120130 0 ... 0 0 0 \n", "120131 0 ... 0 0 0 \n", "120132 0 ... 0 0 0 \n", "120133 0 ... 0 0 0 \n", "120134 0 ... 0 0 0 \n", "\n", " verb.emotion verb.motion verb.perception verb.possession \\\n", "0 0 0 0 0 \n", "1 0 0 0 0 \n", "2 0 0 0 0 \n", "3 0 0 0 0 \n", "3 0 0 0 0 \n", "... ... ... ... ... \n", "120130 0 0 0 0 \n", "120131 0 0 0 0 \n", "120132 0 0 0 0 \n", "120133 0 0 0 0 \n", "120134 0 0 0 0 \n", "\n", " verb.social verb.stative verb.weather \n", "0 0 0 0 \n", "1 0 0 0 \n", "2 0 0 0 \n", "3 0 0 0 \n", "3 0 0 0 \n", "... ... ... ... \n", "120130 0 0 0 \n", "120131 0 0 0 \n", "120132 0 0 0 \n", "120133 0 0 0 \n", "120134 0 0 0 \n", "\n", "[212071 rows x 51 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
membersanrsvadj.alladj.pertadj.ppladv.all...verb.consumptionverb.contactverb.creationverb.emotionverb.motionverb.perceptionverb.possessionverb.socialverb.stativeverb.weather
0avenged100000010...0000000000
1unavenged100000010...0000000000
2beaten100000010...0000000000
3calibrated100000010...0000000000
3graduated100000010...0000000000
..................................................................
120130bromoil process010000000...0000000000
120131interfixation010000000...0000000000
120132consonant mutation010000000...0000000000
120133cohesion010000000...0000000000
120134grammatical cohesion010000000...0000000000
\n", "

212071 rows × 51 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", " \n", " \n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "df_to_upload" } }, "metadata": {}, "execution_count": 82 } ], "source": [ "df_to_upload" ] }, { "cell_type": "code", "source": [ "df_to_upload.head()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 235 }, "id": "EzZKf74kE2cL", "outputId": "7cb82111-04cd-415f-a5d6-3b97c10ac42f" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " members a n r s v adj.all adj.pert adj.ppl adv.all ... \\\n", "0 avenged 1 0 0 0 0 0 0 1 0 ... \n", "1 unavenged 1 0 0 0 0 0 0 1 0 ... \n", "2 beaten 1 0 0 0 0 0 0 1 0 ... \n", "3 calibrated 1 0 0 0 0 0 0 1 0 ... \n", "3 graduated 1 0 0 0 0 0 0 1 0 ... \n", "\n", " verb.consumption verb.contact verb.creation verb.emotion verb.motion \\\n", "0 0 0 0 0 0 \n", "1 0 0 0 0 0 \n", "2 0 0 0 0 0 \n", "3 0 0 0 0 0 \n", "3 0 0 0 0 0 \n", "\n", " verb.perception verb.possession verb.social verb.stative verb.weather \n", "0 0 0 0 0 0 \n", "1 0 0 0 0 0 \n", "2 0 0 0 0 0 \n", "3 0 0 0 0 0 \n", "3 0 0 0 0 0 \n", "\n", "[5 rows x 51 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
membersanrsvadj.alladj.pertadj.ppladv.all...verb.consumptionverb.contactverb.creationverb.emotionverb.motionverb.perceptionverb.possessionverb.socialverb.stativeverb.weather
0avenged100000010...0000000000
1unavenged100000010...0000000000
2beaten100000010...0000000000
3calibrated100000010...0000000000
3graduated100000010...0000000000
\n", "

5 rows × 51 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "df_to_upload" } }, "metadata": {}, "execution_count": 83 } ] }, { "cell_type": "code", "source": [ "df_to_upload = df_to_upload.groupby('members').max().reset_index()\n" ], "metadata": { "id": "WLXGuobjAIQZ" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "df_to_upload" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 513 }, "id": "QboSaTYxEkgV", "outputId": "df4fc32e-9fce-459c-b6ed-d632a28322bb" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " members a n r s v adj.all adj.pert adj.ppl adv.all ... \\\n", "0 .22 0 1 0 0 0 0 0 0 0 ... \n", "1 .22 caliber 1 0 0 0 0 0 1 0 0 ... \n", "2 .22 calibre 1 0 0 0 0 0 1 0 0 ... \n", "3 .22-caliber 1 0 0 0 0 0 1 0 0 ... \n", "4 .22-calibre 1 0 0 0 0 0 1 0 0 ... \n", "... ... .. .. .. .. .. ... ... ... ... ... \n", "153356 zymolysis 0 1 0 0 0 0 0 0 0 ... \n", "153357 zymolytic 1 0 0 0 0 0 1 0 0 ... \n", "153358 zymosis 0 1 0 0 0 0 0 0 0 ... \n", "153359 zymotic 1 0 0 0 0 0 1 0 0 ... \n", "153360 zymurgy 0 1 0 0 0 0 0 0 0 ... \n", "\n", " verb.consumption verb.contact verb.creation verb.emotion \\\n", "0 0 0 0 0 \n", "1 0 0 0 0 \n", "2 0 0 0 0 \n", "3 0 0 0 0 \n", "4 0 0 0 0 \n", "... ... ... ... ... \n", "153356 0 0 0 0 \n", "153357 0 0 0 0 \n", "153358 0 0 0 0 \n", "153359 0 0 0 0 \n", "153360 0 0 0 0 \n", "\n", " verb.motion verb.perception verb.possession verb.social \\\n", "0 0 0 0 0 \n", "1 0 0 0 0 \n", "2 0 0 0 0 \n", "3 0 0 0 0 \n", "4 0 0 0 0 \n", "... ... ... ... ... \n", "153356 0 0 0 0 \n", "153357 0 0 0 0 \n", "153358 0 0 0 0 \n", "153359 0 0 0 0 \n", "153360 0 0 0 0 \n", "\n", " verb.stative verb.weather \n", "0 0 0 \n", "1 0 0 \n", "2 0 0 \n", "3 0 0 \n", "4 0 0 \n", "... ... ... \n", "153356 0 0 \n", "153357 0 0 \n", "153358 0 0 \n", "153359 0 0 \n", "153360 0 0 \n", "\n", "[153361 rows x 51 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
membersanrsvadj.alladj.pertadj.ppladv.all...verb.consumptionverb.contactverb.creationverb.emotionverb.motionverb.perceptionverb.possessionverb.socialverb.stativeverb.weather
0.22010000000...0000000000
1.22 caliber100000100...0000000000
2.22 calibre100000100...0000000000
3.22-caliber100000100...0000000000
4.22-calibre100000100...0000000000
..................................................................
153356zymolysis010000000...0000000000
153357zymolytic100000100...0000000000
153358zymosis010000000...0000000000
153359zymotic100000100...0000000000
153360zymurgy010000000...0000000000
\n", "

153361 rows × 51 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", " \n", " \n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "df_to_upload" } }, "metadata": {}, "execution_count": 86 } ] }, { "cell_type": "code", "source": [ "df_to_upload.to_csv(\"openwordnet-categoricals.csv\", index=False)" ], "metadata": { "id": "dDMrTmRQFovn" }, "execution_count": null, "outputs": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.18" }, "colab": { "provenance": [], "gpuType": "T4", "name": "openwordnet-to-categoricals.ipynb" }, "accelerator": "GPU" }, "nbformat": 4, "nbformat_minor": 0 }