# Training Data for Text Embedding Models This repository contains training files to train text embedding models, e.g. using [sentence-transformers](https://www.SBERT.net). ## Data Format All files are in a `jsonl.gz` format: Each line contains a JSON-object that represent one training example. The JSON objects can come in different formats: - **Pairs:** `["text1", "text2"]` - This is a positive pair that should be close in vector space. - **Triplets:** `["anchor", "positive", "negative"]` - This is a triplet: The `positive` text should be close to the `anchor`, while the `negative` text should be distant to the `anchor`. - **Sets:** `{"set": ["text1", "text2", ...]}` A set of texts describing the same thing, e.g. different paraphrases of the same question, different captions for the same image. Any combination of the elements is considered as a positive pair. ## Available Datasets **Note: I'm currently in the process to upload the files. Please check again next week to get the full list of datasets** We measure the performance for each training dataset by training the [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model on it with [MultipleNegativesRankingLoss](https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss), a batch size of 256, for 2000 training steps. The performance is then averaged across 14 sentence embedding benchmark datasets from diverse domains (Reddit, Twitter, News, Publications, E-Mails, ...). | Dataset | Description | Size (#Lines) | Performance | Reference | | --- | --- | :---: | :---: | --- | | [AllNLI.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/AllNLI.jsonl.gz) | Combination of SNLI + MultiNLI Triplets: (Anchor, Entailment_Text, Contradiction_Text) | 277,230 | 56.57 | [SNLI](https://huggingface.co/datasets/snli) and [MNLI](https://huggingface.co/datasets/multi_nli) | [altlex.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/altlex.jsonl.gz) | Matched pairs (English_Wikipedia, Simple_English_Wikipedia) | 112,696 | 55.95 | [altlex](https://github.com/chridey/altlex/) | [coco_captions.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/coco_captions.jsonl.gz) | Different captions for the same image | 82,783 | 53.77 | [COCO](https://cocodataset.org/) | [codesearchnet.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/codesearchnet.jsonl.gz) | CodeSearchNet corpus is a dataset of (comment, code) pairs from opensource libraries hosted on GitHub. It contains code and documentation for several programming languages. | 1,151,414 | 55.80 | [CodeSearchNet](https://huggingface.co/datasets/code_search_net) | [eli5_question_answer.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/eli5_question_answer.jsonl.gz) | (Question, Answer)-Pairs from ELI5 dataset | 325,475 | 58.24 | [ELI5](https://huggingface.co/datasets/eli5) | [fever_train.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/fever_train.jsonl.gz) | Training data from the FEVER corpus | 139,051 | 52.63 | [FEVER](https://huggingface.co/datasets/fever) | [flickr30k_captions.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/flickr30k_captions.jsonl.gz) | Different captions for the same image from the Flickr30k dataset | 31,783 | 54.68 | [Flickr30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [gooaq_pairs.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/gooaq_pairs.jsonl.gz) | (Question, Answer)-Pairs from Google auto suggest | 3,012,496 | 59.06 | [GooAQ](https://github.com/allenai/gooaq) | [NQ-train_pairs.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/NQ-train_pairs.jsonl.gz) | Training pairs (query, answer_passage) from the NQ dataset | 100,231 | 57.48 | [Natural Questions](https://ai.google.com/research/NaturalQuestions) | [PAQ_pairs.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/PAQ_pairs.jsonl.gz) | Training pairs (query, answer_passage) from the PAQ dataset | 64,371,441 | 56.11 | [PAQ](https://github.com/facebookresearch/PAQ) | [quora_duplicates.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/quora_duplicates.jsonl.gz) | Duplicate question pairs from Quora | 103,663 | 57.36 | [QQP](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | [sentence-compression.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/sentence-compression.jsonl.gz) | Pairs (long_text, short_text) about sentence-compression | 180,000 | 55.63 | [Sentence-Compression](https://github.com/google-research-datasets/sentence-compression) | [specter_train_triples.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/specter_train_triples.jsonl.gz) | Triplets (Title, related_title, hard_negative) for Scientific Publications from Specter | 684,100 | 56.32 | [SPECTER](https://github.com/allenai/specter) | [squad_pairs.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/squad_pairs.jsonl.gz) | (Question, Answer_Passage) Pairs from SQuAD dataset | 87,599 | 58.02 | [SQuAD](https://huggingface.co/datasets/squad) | [stackexchange_duplicate_questions_body_body.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/stackexchange_duplicate_questions_body_body.jsonl.gz) | (Body, Body) pairs of duplicate questions from StackExchange | 250,519 | 57.26 | [Stack Exchange Data API](https://data.stackexchange.com/apple/query/fork/1456963) | [stackexchange_duplicate_questions_title-body_title-body.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/stackexchange_duplicate_questions_title-body_title-body.jsonl.gz) | (Title+Body, Title+Body) pairs of duplicate questions from StackExchange | 250,460 | 57.30 | [Stack Exchange Data API](https://data.stackexchange.com/apple/query/fork/1456963) | [stackexchange_duplicate_questions_title_title.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/stackexchange_duplicate_questions_title_title.jsonl.gz) | (Title, Title) pairs of duplicate questions from StackExchange | 304,525 | 58.47 | [Stack Exchange Data API](https://data.stackexchange.com/apple/query/fork/1456963) | [S2ORC_title_abstract.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/S2ORC_title_abstract.jsonl.gz) | (Title, Abstract) pairs of scientific papers | 41,769,185 | 57.39 | [S2ORC](https://github.com/allenai/s2orc) | [SimpleWiki.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/SimpleWiki.jsonl.gz) | Matched pairs (English_Wikipedia, Simple_English_Wikipedia) | 102,225 | 56.15 | [SimpleWiki](https://cs.pomona.edu/~dkauchak/simplification/) | [TriviaQA_pairs.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/TriviaQA_pairs.jsonl.gz) | Pairs (query, answer) from TriviaQA dataset | 73,346 | 55.56 | [TriviaQA](https://huggingface.co/datasets/trivia_qa) | [WikiAnswers.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/WikiAnswers.jsonl.gz) | Sets of duplicates questions | 27,383,151 | 57.34 | [WikiAnswers Corpus](https://github.com/afader/oqa#wikianswers-corpus) | [wikihow.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/wikihow.jsonl.gz) | (Summary, Text) from WikiHow | 128,542 | 57.67 | [WikiHow](https://github.com/pvl/wikihow_pairs_dataset) | [yahoo_answers_question_answer.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/yahoo_answers_question_answer.jsonl.gz) | (Question_Body, Answer) pairs from Yahoo Answers | 681,164 | 57.74 | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) | [yahoo_answers_title_answer.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/yahoo_answers_title_answer.jsonl.gz) | (Title, Answer) pairs from Yahoo Answers | 1,198,260 | 58.65 | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) | [yahoo_answers_title_question.jsonl.gz](https://huggingface.co/datasets/sentence-transformers/embedding-training-data/resolve/main/yahoo_answers_title_question.jsonl.gz) | (Title, Question_Body) pairs from Yahoo Answers | 659,896 | 58.05 | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset)