File size: 5,872 Bytes
2d714b0 903c3b8 2d714b0 9bc2acb 07e6a88 9bc2acb cdaf908 2d714b0 9bc2acb cdaf908 9bc2acb 2d714b0 9bc2acb 07e6a88 9bc2acb 2d714b0 903c3b8 9bc2acb cdaf908 9bc2acb 2d714b0 903c3b8 1940622 903c3b8 1940622 903c3b8 1940622 903c3b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
---
language:
- en
multilinguality:
- monolingual
size_categories:
- 100M<n<1B
task_categories:
- feature-extraction
- sentence-similarity
pretty_name: S2ORC
tags:
- sentence-transformers
dataset_info:
- config_name: abstract-citation-pair
features:
- name: abstract
dtype: string
- name: citation
sequence: string
splits:
- name: train
num_bytes: 233783770553
num_examples: 26367485
download_size: 130121093323
dataset_size: 233783770553
- config_name: abstract-citation-pair-all
features:
- name: abstract
dtype: string
- name: citation
sequence: string
splits:
- name: train
- config_name: title-abstract-pair
features:
- name: title
dtype: string
- name: abstract
dtype: string
splits:
- name: train
num_bytes: 30708996393
num_examples: 41769185
download_size: 19187786420
dataset_size: 30708996393
- config_name: title-citation-pair
features:
- name: title
dtype: string
- name: citation
dtype: string
splits:
- name: train
num_bytes: 9567159942
num_examples: 51030086
download_size: 7054217221
dataset_size: 9567159942
- config_name: title-citation-pair-all
features:
- name: title
dtype: string
- name: citation
dtype: string
splits:
- name: train
configs:
- config_name: abstract-citation-pair
data_files:
- split: train
path: abstract-citation-pair/train-*
- config_name: abstract-citation-pair-all
data_files:
- split: train
path: abstract-citation-pair-all/train-*
- config_name: title-abstract-pair
data_files:
- split: train
path: title-abstract-pair/train-*
default: true
- config_name: title-citation-pair
data_files:
- split: train
path: title-citation-pair/train-*
- config_name: title-citation-pair-all
data_files:
- split: train
path: title-citation-pair-all/train-*
---
# Dataset Card for S2ORC
This dataset contains titles, abstracts, and citations from scientific papers from the [Semantic Scholar Open Research Corpus (S2ORC)](https://github.com/allenai/s2orc).
This dataset can and has been used to train embedding models, and works out of the box to train or finetune [Sentence Transformer](https://sbert.net/) models.
In our experiments, title-abstract pairs result in the highest performance, followed by titles-citations and then abstract-citations pairs.
## Dataset Subsets
### `title-abstract-pair` subset
* Columns: "title", "abstract"
* Column types: `str`, `str`
* Examples:
```python
{
"title": "Syntheses, Structures and Properties of Two Transition Metal-Flexible Ligand Coordination Polymers",
"abstract": "Two coordination polymers based on 3,5-bis(4-carboxyphenylmethyloxy) benzoic acid (H3L), [M(HL)]·2H2O M = Mn(1), Co(2), have been synthesized under hydrothermal conditions. Their structures have been determined by single-crystal X-ray diffraction and further characterized by elemental analysis, IR spectra and TGA. The two complexes possess 3D framework with diamond channels resulting from the trans-configuration of the flexible ligand and three coordination modes, 3(η2, η1), 2(η1, η1), η1, of carboxyl groups in the ligand. The framework can be represented with Schlafli symbol of (48·66)(47·66). The wall of the channel consists of left- or right-handed helical polymeric chains. UV–visible–NIR and photoluminescence spectra, magnetic properties of 1 and 2 have also been discussed.",
}
```
* Collection strategy: Reading the S2ORC titles-abstract dataset from [embedding-training-data](https://huggingface.co/datasets/sentence-transformers/embedding-training-data).
* Deduplified: No
### `title-citation-pair` subset
* Columns: "title", "citation"
* Column types: `str`, `str`
* Examples:
```python
{
"title": "An apparent neuroleptic malignant syndrome without extrapyramidal symptoms upon initiation of clozapine therapy: report of a case and results of a clozapine rechallenge.",
"citation": "Antipsychotic Rechallenge After Neuroleptic Malignant Syndrome with Catatonic Features"
}
```
* Collection strategy: Reading the S2ORC titles-citation dataset from [embedding-training-data](https://huggingface.co/datasets/sentence-transformers/embedding-training-data) and considering each title together with the first citation as a sample.
* Deduplified: No
### `title-citation-pair-all` subset
* Columns: "title", "citation"
* Column types: `str`, `str`
* Examples:
```python
{
"title": "An apparent neuroleptic malignant syndrome without extrapyramidal symptoms upon initiation of clozapine therapy: report of a case and results of a clozapine rechallenge.",
"citation": "Antipsychotic Rechallenge After Neuroleptic Malignant Syndrome with Catatonic Features"
}
```
* Collection strategy: Reading the S2ORC titles-citation dataset from [embedding-training-data](https://huggingface.co/datasets/sentence-transformers/embedding-training-data) and considering each title together with each citation as a sample.
* Deduplified: No
### `abstract-citation-pair` subset
* Columns: "abstract", "citation"
* Column types: `str`, `str`
* Examples:
```python
```
* Collection strategy: Reading the S2ORC abstract-citation dataset from [embedding-training-data](https://huggingface.co/datasets/sentence-transformers/embedding-training-data) and considering each citation together with the first abstract as a sample.
* Deduplified: No
### `abstract-citation-pair-all` subset
* Columns: "abstract", "citation"
* Column types: `str`, `str`
* Examples:
```python
```
* Collection strategy: Reading the S2ORC abstract-citation dataset from [embedding-training-data](https://huggingface.co/datasets/sentence-transformers/embedding-training-data) and considering each citation together with each abstract as a sample.
* Deduplified: No |