shchoi1019 commited on
Commit
389ac74
·
verified ·
1 Parent(s): 37ee57c

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +221 -0
README.md ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - no-annotation
4
+ language_creators:
5
+ - expert-generated
6
+ language:
7
+ - en
8
+ license:
9
+ - cc0-1.0
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 1M<n<10M
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - translation
18
+ - summarization
19
+ - text-retrieval
20
+ task_ids:
21
+ - document-retrieval
22
+ - entity-linking-retrieval
23
+ - explanation-generation
24
+ - fact-checking-retrieval
25
+ - text-simplification
26
+ paperswithcode_id: null
27
+ pretty_name: arXiv Dataset
28
+ dataset_info:
29
+ features:
30
+ - name: id
31
+ dtype: string
32
+ - name: submitter
33
+ dtype: string
34
+ - name: authors
35
+ dtype: string
36
+ - name: title
37
+ dtype: string
38
+ - name: comments
39
+ dtype: string
40
+ - name: journal-ref
41
+ dtype: string
42
+ - name: doi
43
+ dtype: string
44
+ - name: report-no
45
+ dtype: string
46
+ - name: categories
47
+ dtype: string
48
+ - name: license
49
+ dtype: string
50
+ - name: abstract
51
+ dtype: string
52
+ - name: update_date
53
+ dtype: string
54
+ splits:
55
+ - name: train
56
+ num_bytes: 3556070272
57
+ num_examples: 2677526
58
+ download_size: 0
59
+ dataset_size: 3556070272
60
+ ---
61
+
62
+ # Dataset Card for arXiv Dataset
63
+
64
+ ## Table of Contents
65
+ - [Dataset Description](#dataset-description)
66
+ - [Dataset Summary](#dataset-summary)
67
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
68
+ - [Languages](#languages)
69
+ - [Dataset Structure](#dataset-structure)
70
+ - [Data Instances](#data-instances)
71
+ - [Data Fields](#data-fields)
72
+ - [Data Splits](#data-splits)
73
+ - [Dataset Creation](#dataset-creation)
74
+ - [Curation Rationale](#curation-rationale)
75
+ - [Source Data](#source-data)
76
+ - [Annotations](#annotations)
77
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
78
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
79
+ - [Social Impact of Dataset](#social-impact-of-dataset)
80
+ - [Discussion of Biases](#discussion-of-biases)
81
+ - [Other Known Limitations](#other-known-limitations)
82
+ - [Additional Information](#additional-information)
83
+ - [Dataset Curators](#dataset-curators)
84
+ - [Licensing Information](#licensing-information)
85
+ - [Citation Information](#citation-information)
86
+ - [Contributions](#contributions)
87
+
88
+ ## Dataset Description
89
+
90
+ - **Homepage:** [Kaggle arXiv Dataset Homepage](https://www.kaggle.com/Cornell-University/arxiv)
91
+ - **Repository:**
92
+ - **Paper:** [On the Use of ArXiv as a Dataset](https://arxiv.org/abs/1905.00075)
93
+ - **Leaderboard:**
94
+ - **Point of Contact:** [Matt Bierbaum](mailto:matt.bierbaum@gmail.com)
95
+
96
+ ### Dataset Summary
97
+
98
+ A dataset of 1.7 million arXiv articles for applications like trend analysis, paper recommender engines, category prediction, co-citation networks, knowledge graph construction and semantic search interfaces.
99
+
100
+ ### Supported Tasks and Leaderboards
101
+
102
+ [More Information Needed]
103
+
104
+ ### Languages
105
+
106
+ The language supported is English
107
+
108
+ ## Dataset Structure
109
+
110
+ ### Data Instances
111
+
112
+ This dataset is a mirror of the original ArXiv data. Because the full dataset is rather large (1.1TB and growing), this dataset provides only a metadata file in the json format. An example is given below
113
+
114
+ ```
115
+ {'id': '0704.0002',
116
+ 'submitter': 'Louis Theran',
117
+ 'authors': 'Ileana Streinu and Louis Theran',
118
+ 'title': 'Sparsity-certifying Graph Decompositions',
119
+ 'comments': 'To appear in Graphs and Combinatorics',
120
+ 'journal-ref': None,
121
+ 'doi': None,
122
+ 'report-no': None,
123
+ 'categories': 'math.CO cs.CG',
124
+ 'license': 'http://arxiv.org/licenses/nonexclusive-distrib/1.0/',
125
+ 'abstract': ' We describe a new algorithm, the $(k,\\ell)$-pebble game with colors, and use\nit obtain a characterization of the family of $(k,\\ell)$-sparse graphs and\nalgorithmic solutions to a family of problems concerning tree decompositions of\ngraphs. Special instances of sparse graphs appear in rigidity theory and have\nreceived increased attention in recent years. In particular, our colored\npebbles generalize and strengthen the previous results of Lee and Streinu and\ngive a new proof of the Tutte-Nash-Williams characterization of arboricity. We\nalso present a new decomposition that certifies sparsity based on the\n$(k,\\ell)$-pebble game with colors. Our work also exposes connections between\npebble game algorithms and previous sparse graph algorithms by Gabow, Gabow and\nWestermann and Hendrickson.\n',
126
+ 'update_date': '2008-12-13'}
127
+ ```
128
+
129
+ ### Data Fields
130
+
131
+ - `id`: ArXiv ID (can be used to access the paper)
132
+ - `submitter`: Who submitted the paper
133
+ - `authors`: Authors of the paper
134
+ - `title`: Title of the paper
135
+ - `comments`: Additional info, such as number of pages and figures
136
+ - `journal-ref`: Information about the journal the paper was published in
137
+ - `doi`: [Digital Object Identifier](https://www.doi.org)
138
+ - `report-no`: Report Number
139
+ - `abstract`: The abstract of the paper
140
+ - `categories`: Categories / tags in the ArXiv system
141
+
142
+
143
+ ### Data Splits
144
+
145
+ The data was not splited.
146
+
147
+ ## Dataset Creation
148
+
149
+ ### Curation Rationale
150
+
151
+ For nearly 30 years, ArXiv has served the public and research communities by providing open access to scholarly articles, from the vast branches of physics to the many subdisciplines of computer science to everything in between, including math, statistics, electrical engineering, quantitative biology, and economics. This rich corpus of information offers significant, but sometimes overwhelming depth. In these times of unique global challenges, efficient extraction of insights from data is essential. To help make the arXiv more accessible, a free, open pipeline on Kaggle to the machine-readable arXiv dataset: a repository of 1.7 million articles, with relevant features such as article titles, authors, categories, abstracts, full text PDFs, and more is presented to empower new use cases that can lead to the exploration of richer machine learning techniques that combine multi-modal features towards applications like trend analysis, paper recommender engines, category prediction, co-citation networks, knowledge graph construction and semantic search interfaces.
152
+
153
+ ### Source Data
154
+
155
+ This data is based on arXiv papers.
156
+ [More Information Needed]
157
+
158
+ #### Initial Data Collection and Normalization
159
+
160
+ [More Information Needed]
161
+
162
+ #### Who are the source language producers?
163
+
164
+ [More Information Needed]
165
+
166
+ ### Annotations
167
+
168
+ This dataset contains no annotations.
169
+
170
+ #### Annotation process
171
+
172
+ [More Information Needed]
173
+
174
+ #### Who are the annotators?
175
+
176
+ [More Information Needed]
177
+
178
+ ### Personal and Sensitive Information
179
+
180
+ [More Information Needed]
181
+
182
+ ## Considerations for Using the Data
183
+
184
+ ### Social Impact of Dataset
185
+
186
+ [More Information Needed]
187
+
188
+ ### Discussion of Biases
189
+
190
+ [More Information Needed]
191
+
192
+ ### Other Known Limitations
193
+
194
+ [More Information Needed]
195
+
196
+ ## Additional Information
197
+
198
+ ### Dataset Curators
199
+
200
+ The original data is maintained by [ArXiv](https://arxiv.org/)
201
+
202
+ ### Licensing Information
203
+
204
+ The data is under the [Creative Commons CC0 1.0 Universal Public Domain Dedication](https://creativecommons.org/publicdomain/zero/1.0/)
205
+
206
+ ### Citation Information
207
+
208
+ ```
209
+ @misc{clement2019arxiv,
210
+ title={On the Use of ArXiv as a Dataset},
211
+ author={Colin B. Clement and Matthew Bierbaum and Kevin P. O'Keeffe and Alexander A. Alemi},
212
+ year={2019},
213
+ eprint={1905.00075},
214
+ archivePrefix={arXiv},
215
+ primaryClass={cs.IR}
216
+ }
217
+ ```
218
+
219
+ ### Contributions
220
+
221
+ Thanks to [@tanmoyio](https://github.com/tanmoyio) for adding this dataset.