File size: 2,776 Bytes
9db7dac fdc5c15 9db7dac fdc5c15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
---
license: cc-by-4.0
language:
- zh
tags:
- text-generation
- e-commerce advertise
pretty_name: AdvertiseGen
task_categories:
- text-generation
---
# Dataset Card for Alpaca-zh
- **formal url:** https://www.luge.ai/#/luge/dataDetail?id=9
## Dataset Description
数据集介绍
AdvertiseGen是电商广告文案生成数据集。
AdvertiseGen以商品网页的标签与文案的信息对应关系为基础构造,是典型的开放式生成任务,在模型基于key-value输入生成开放式文案时,与输入信息的事实一致性需要得到重点关注。
- 任务描述:给定商品信息的关键词和属性列表kv-list,生成适合该商品的广告文案adv;
- 数据规模:训练集114k,验证集1k,测试集3k;
- 数据来源:清华大学CoAI小组;
### Supported Tasks and Leaderboards
The Alpaca dataset designed for instruction training pretrained language models.
### Languages
The data in AdvertiseGen are in Chinese.
## Dataset Structure
### Data Instances
An example of "train" looks as follows:
```json
{
"content": "类型#上衣*材质#牛仔布*颜色#白色*风格#简约*图案#刺绣*衣样式#外套*衣款式#破洞",
"summary": "简约而不简单的牛仔外套,白色的衣身十分百搭。衣身多处有做旧破洞设计,打破单调乏味,增加一丝造型看点。衣身后背处有趣味刺绣装饰,丰富层次感,彰显别样时尚。"
}
```
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
The `alpaca` data is generated by a language model (`text-davinci-003`) and inevitably contains some errors or biases. We encourage users to use this data with caution and propose new methods to filter or improve the imperfections.
## Additional Information
### Dataset Curators
[More Information Needed]
### Citation Information
数据集引用
如在学术论文中使用本数据集,请添加相关引用说明,具体如下:
```
Shao, Zhihong, et al. "Long and Diverse Text Generation with Planning-based Hierarchical Variational Model." Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019.
```
### Contributions
[More Information Needed] |