shibing624 commited on
Commit
5e66c32
·
1 Parent(s): fdc5c15

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -53
README.md CHANGED
@@ -10,7 +10,7 @@ task_categories:
10
  - text-generation
11
  ---
12
 
13
- # Dataset Card for Alpaca-zh
14
 
15
  - **formal url:** https://www.luge.ai/#/luge/dataDetail?id=9
16
 
@@ -28,7 +28,7 @@ AdvertiseGen以商品网页的标签与文案的信息对应关系为基础构
28
 
29
  ### Supported Tasks and Leaderboards
30
 
31
- The Alpaca dataset designed for instruction training pretrained language models.
32
 
33
  ### Languages
34
 
@@ -47,53 +47,6 @@ An example of "train" looks as follows:
47
  }
48
  ```
49
 
50
- ## Dataset Creation
51
-
52
- ### Curation Rationale
53
-
54
- [More Information Needed]
55
-
56
- ### Source Data
57
-
58
- #### Initial Data Collection and Normalization
59
-
60
- [More Information Needed]
61
-
62
- #### Who are the source language producers?
63
-
64
- [More Information Needed]
65
-
66
- ### Annotations
67
-
68
- #### Annotation process
69
-
70
- [More Information Needed]
71
-
72
- #### Who are the annotators?
73
-
74
- [More Information Needed]
75
-
76
- ### Personal and Sensitive Information
77
-
78
- [More Information Needed]
79
-
80
- ## Considerations for Using the Data
81
-
82
-
83
- ### Discussion of Biases
84
-
85
- [More Information Needed]
86
-
87
- ### Other Known Limitations
88
-
89
- The `alpaca` data is generated by a language model (`text-davinci-003`) and inevitably contains some errors or biases. We encourage users to use this data with caution and propose new methods to filter or improve the imperfections.
90
-
91
-
92
- ## Additional Information
93
-
94
- ### Dataset Curators
95
-
96
- [More Information Needed]
97
 
98
  ### Citation Information
99
  数据集引用
@@ -102,7 +55,3 @@ The `alpaca` data is generated by a language model (`text-davinci-003`) and inev
102
  ```
103
  Shao, Zhihong, et al. "Long and Diverse Text Generation with Planning-based Hierarchical Variational Model." Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019.
104
  ```
105
-
106
- ### Contributions
107
-
108
- [More Information Needed]
 
10
  - text-generation
11
  ---
12
 
13
+ # Dataset Card for AdvertiseGen
14
 
15
  - **formal url:** https://www.luge.ai/#/luge/dataDetail?id=9
16
 
 
28
 
29
  ### Supported Tasks and Leaderboards
30
 
31
+ The dataset designed for generate e-commerce advertise.
32
 
33
  ### Languages
34
 
 
47
  }
48
  ```
49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
  ### Citation Information
52
  数据集引用
 
55
  ```
56
  Shao, Zhihong, et al. "Long and Diverse Text Generation with Planning-based Hierarchical Variational Model." Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019.
57
  ```