"""Natural Language Inference (NLI) Chinese Corpus.(nli_zh)""" import csv import os import datasets _DESCRIPTION = """\ 常见中文语义匹配数据集,包含ATEC、BQ、LCQMC、PAWSX、STS-B共5个任务。 """ class Nli_zh(datasets.GeneratorBasedBuilder): """The Natural Language Inference Chinese(NLI_zh) Corpus.""" BUILDER_CONFIGS = [ datasets.BuilderConfig( name="ATEC", version=datasets.Version("1.0.0", ""), description="Plain text import of NLI_zh", ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "sentence1": datasets.Value("string"), "sentence2": datasets.Value("string"), "label": datasets.Value("int32"), } ), supervised_keys=None, homepage="https://github.com/shibing624/text2vec", ) def _split_generators(self, dl_manager): dl_dir = dl_manager.download_and_extract(_DATA_URL) data_dir = os.path.join(dl_dir, "nli_zh") return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "snli_1.0_test.txt")} ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, "snli_1.0_dev.txt")} ), datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "snli_1.0_train.txt")} ), ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" with open(filepath, encoding="utf-8") as f: reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) for idx, row in enumerate(reader): label = -1 if row["gold_label"] == "-" else row["gold_label"] yield idx, { "premise": row["sentence1"], "hypothesis": row["sentence2"], "label": label, }