File size: 4,900 Bytes
df72be9
 
b3ef7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fd8170
b3ef7bd
 
8fd8170
 
 
 
 
 
 
 
 
 
 
 
df72be9
8fd8170
 
59fbdfc
8fd8170
 
 
 
 
 
 
 
 
 
 
88e1c80
 
8fd8170
 
 
88e1c80
8fd8170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
license: cc-by-4.0
dataset_info:
  features:
  - name: id
    dtype: int64
  - name: description
    dtype: string
  - name: duration
    dtype: float64
  - name: aspectratio
    dtype: string
  - name: videourl
    dtype: string
  - name: author
    dtype: string
  - name: categories
    dtype: string
  - name: framerate
    dtype: float64
  - name: r18
    dtype: int64
  splits:
  - name: train
    num_bytes: 16755833083
    num_examples: 14394510
  download_size: 5410262648
  dataset_size: 16755833083
task_categories:
- text-to-video
- video-classification
language:
- en
tags:
- captions
- metadata
pretty_name: CleanVid Map (15M)
size_categories:
- 10M<n<100M
---

# CleanVid Map (15M) πŸŽ₯
### TempoFunk Video Generation Project

CleanVid-15M is a large-scale dataset of videos with multiple metadata entries such as:
- Textual Descriptions πŸ“ƒ
- Recording Equipment πŸ“Ή
- Categories πŸ” 
- Framerate 🎞️
- Aspect Ratio πŸ“Ί

CleanVid aim is to improve the quality of WebVid-10M dataset by adding more data and cleaning the dataset by dewatermarking the videos in it.

This dataset includes only the map with the urls and metadata, with 3,694,510 more entries than the original WebVid-10M dataset.
Note that the videos are low-resolution, ranging from 240p to 480p. But this shouldn't be a problem as resolution scaling is difficult in Text-To-Video models.
More Datasets to come for high-res use cases.

CleanVid is the foundation dataset for the TempoFunk Video Generation project.

Built from a crawl of Shutterstock from June 25, 2023.

## Format πŸ“Š

- id: Integer (int64) - Shutterstock video ID
- description: String - Description of the video
- duration: Float(64) - Duration of the video in seconds
- aspectratio: String - Aspect Ratio of the video separated by colons (":")
- videourl: String - Video URL for the video in the entry, MP4 format. WEBM format is also available most of the times (by changing the extension at the end of the URL.).
- author: String - JSON-String containing information of the author such as `Recording Equipment`, `Style`, `Nationality` and others.
- categories: String - JSON-String containing the categories of the videos. (Values from shutterstock, not by us.)
- framerate: Float(64) - Framerate of the video
- r18: Bit (int64) - Wether the video is marked as mature content. 0 = Safe For Work; 1 = Mature Content

## Code πŸ‘©β€πŸ’»

If you want to re-create this dataset on your own, code is available here:

https://github.com/chavinlo/tempofunk-scrapper/tree/refractor1/sites/shutterstock

Due to rate-limitations, you might need to obtain a proxy. Functionality for proxies is included in the repository.

## Sample πŸ§ͺ

```json
{
  "id": 1056934082,
  "description": "Rio, Brazil - February 24, 2020: parade of the samba school Mangueira, at the Marques de Sapucai Sambodromo",
  "duration": 9.76,
  "aspectratio": "16:9",
  "videourl": "https://www.shutterstock.com/shutterstock/videos/1056934082/preview/stock-footage-rio-brazil-february-parade-of-the-samba-school-mangueira-at-the-marques-de-sapucai.mp4",
  "author": {
    "accountsId": 101974372,
    "contributorId": 62154,
    "bio": "Sempre produzindo mais",
    "location": "br",
    "website": "www.dcpress.com.br",
    "contributorTypeList": [
      "photographer"
    ],
    "equipmentList": [
      "300mm f2.8",
      "24-70mm",
      "70-200mm",
      "Nikon D7500 ",
      "Nikon Df",
      "Flashs Godox"
    ],
    "styleList": [
      "editorial",
      "food",
      "landscape"
    ],
    "subjectMatterList": [
      "photographer",
      "people",
      "nature",
      "healthcare",
      "food_and_drink"
    ],
    "facebookUsername": "celso.pupo",
    "googlePlusUsername": "celsopupo",
    "twitterUsername": "celsopupo",
    "storageKey": "/contributors/62154/avatars/thumb.jpg",
    "cdnThumbPath": "/contributors/62154/avatars/thumb.jpg",
    "displayName": "Celso Pupo",
    "vanityUrlUsername": "rodrigues",
    "portfolioUrlSuffix": "rodrigues",
    "portfolioUrl": "https://www.shutterstock.com/g/rodrigues",
    "instagramUsername": "celsopupo",
    "hasPublicSets": true,
    "instagramUrl": "https://www.instagram.com/celsopupo",
    "facebookUrl": "https://www.facebook.com/celso.pupo",
    "twitterUrl": "https://twitter.com/celsopupo"
  },
  "categories": [
    "People"
  ],
  "framerate": 29.97,
  "r18": 0
}
```

## Credits πŸ‘₯

### Main

- Lopho - Part of TempoFunk Video Generation
- Chavinlo - Part of TempoFunk Video Generation & CleanVid Crawling, Scraping and Formatting

```
@InProceedings{Bain21,
  author       = "Max Bain and Arsha Nagrani and G{\"u}l Varol and Andrew Zisserman",
  title        = "Frozen in Time: A Joint Video and Image Encoder for End-to-End Retrieval",
  booktitle    = "IEEE International Conference on Computer Vision",
  year         = "2021",
}
```

### Extra

- Salt - Base Threading Code (2022)