JDocQA / JDocQA.py
shunk031's picture
Update readme (#7)
210c48e unverified
raw
history blame
11.6 kB
# Copyright 2024 Shunsuke Kitada and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This script was generated from shunk031/cookiecutter-huggingface-datasets.
#
import json
import os
import re
from dataclasses import dataclass
from typing import List
import datasets as ds
from datasets.utils.logging import get_logger
logger = get_logger(__name__)
_CITATION = """\
@inproceedings{onami2024jdocqa,
title={JDocQA: Japanese Document Question Answering Dataset for Generative Language Models},
author={Onami, Eri and Kurita, Shuhei and Miyanishi, Taiki and Watanabe, Taro},
booktitle={Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
pages={9503--9514},
year={2024}
}
"""
_DESCRIPTION = """\
Japanese Document Question Answering (JDocQA), a large-scale document-based QA dataset, essentially requiring both visual and textual information to answer questions, which comprises 5,504 documents in PDF format and annotated 11,600 question-and-answer instances in Japanese.
"""
_HOMEPAGE = "https://github.com/mizuumi/JDocQA"
_LICENSE = "JDocQA dataset annotations are distributed under CC BY-SA 4.0. We are delighted to see many derivations from JDocQA! When you create any derivations, e.g., datasets, papers, etc, from JDocQA, please cite our paper accordingly. If your derivations are web-based projects, please cite our paper and include the link to this github page."
_URLS = {
"annotations": {
"train": "https://raw.githubusercontent.com/mizuumi/JDocQA/main/dataset/annotation_files/jdocqa_train_all.json",
"validation": "https://github.com/mizuumi/JDocQA/raw/main/dataset/annotation_files/jdocqa_validation_all.json",
"test": "https://github.com/mizuumi/JDocQA/raw/main/dataset/annotation_files/jdocqa_test_all.json",
},
"documents": "https://vlm-lab-fileshare.s3.ap-northeast-1.amazonaws.com/pdf_files.zip",
}
@dataclass
class JDocQADatasetConfig(ds.BuilderConfig):
rename_pdf_category: bool = False
class JDocQADataset(ds.GeneratorBasedBuilder):
"""A class for loading JDocQA dataset."""
VERSION = ds.Version("1.0.0")
BUILDER_CONFIGS = [
JDocQADatasetConfig(
version=VERSION,
description=_DESCRIPTION,
),
]
BUILDER_CONFIG_CLASS = JDocQADatasetConfig
def _info(self) -> ds.DatasetInfo:
answer_type = ds.ClassLabel(
num_classes=4,
names=["yes/no", "factoid", "numerical", "open-ended"],
)
multiple_select_answer = ds.ClassLabel(
num_classes=4,
names=["A", "B", "C", "D"],
)
no_reason = ds.ClassLabel(
num_classes=4,
names=["0", "1", "2", "1,2"],
)
pdf_category = ds.ClassLabel(
num_classes=4,
names=["Report", "Pamphlet", "Slide", "Website"]
if self.config.rename_pdf_category # type: ignore
else ["Document", "Kouhou", "Slide", "Website"],
)
type_of_image = ds.ClassLabel(
num_classes=10,
names=[
"null",
"Table",
"Bar chart",
"Line chart",
"Pie chart",
"Map",
"Other figures",
"Mixtured writing style from left to the right and from upside to the downside",
"Drawings",
"Others",
],
)
features = ds.Features(
{
"answer": ds.Value("string"),
"answer_type": answer_type,
"context": ds.Value("string"),
"multiple_select_answer": multiple_select_answer,
"multiple_select_question": ds.Sequence(ds.Value("string")),
"no_reason": no_reason,
"normalized_answer": ds.Value("string"),
"original_answer": ds.Value("string"),
"original_context": ds.Value("string"),
"original_question": ds.Value("string"),
"pdf_category": pdf_category,
"pdf_name": ds.Value("string"),
"question": ds.Value("string"),
"question_number": ds.Sequence(ds.Value("uint64")),
"question_page_number": ds.Value("string"),
"reason_of_answer_bbox": ds.Sequence(ds.Value("string")),
"text_from_ocr_pdf": ds.Value("string"),
"text_from_pdf": ds.Value("string"),
"type_of_image": ds.Sequence(type_of_image),
#
# `pdf_filepath` is added to the original dataset for convenience
"pdf_filepath": ds.Value("string"),
}
)
return ds.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(
self, dl_manager: ds.DownloadManager
) -> List[ds.SplitGenerator]:
files = dl_manager.download_and_extract(_URLS)
tng_ann_filepath = files["annotations"]["train"] # type: ignore
val_ann_filepath = files["annotations"]["validation"] # type: ignore
tst_ann_filepath = files["annotations"]["test"] # type: ignore
documents_dirpath = os.path.join(files["documents"], "pdf_files") # type: ignore
return [
ds.SplitGenerator(
name=ds.Split.TRAIN, # type: ignore
gen_kwargs={
"annotation_path": tng_ann_filepath,
"documents_dir": documents_dirpath,
},
),
ds.SplitGenerator(
name=ds.Split.VALIDATION, # type: ignore
gen_kwargs={
"annotation_path": val_ann_filepath,
"documents_dir": documents_dirpath,
},
),
ds.SplitGenerator(
name=ds.Split.TEST, # type: ignore
gen_kwargs={
"annotation_path": tst_ann_filepath,
"documents_dir": documents_dirpath,
},
),
]
def _convert_answer_type(self, answer_type: str) -> str:
if answer_type == "1":
return "yes/no"
elif answer_type == "2":
return "factoid"
elif answer_type == "3":
return "numerical"
elif answer_type == "4":
return "open-ended"
else:
raise ValueError(f"Unknown answer type: {answer_type}")
def _convert_multiple_select_question(
self, multiple_select_question: str
) -> List[str]:
_, qs = multiple_select_question.split("(A)")
questions = []
for sep in ("(B)", "(C)", "(D)"):
q, qs = qs.split(sep)
questions.append(q)
questions.append(qs)
assert (
len(questions) == 4
), f"Before: {multiple_select_question}, After: {questions}"
questions = [question.rstrip("、") for question in questions]
return questions
def _convert_question_number(self, question_number: str) -> List[int]:
return [int(qn) for qn in question_number.split("-")]
def _convert_reason_of_answer_bbox(self, reason_of_answer_bbox: str) -> List[str]:
reason_of_answer_bboxes = [
r for r in re.split(r"[.,、、]", reason_of_answer_bbox)
]
check = [r.isdigit() if r != "" else r == "" for r in reason_of_answer_bboxes]
assert all(check), reason_of_answer_bboxes
return reason_of_answer_bboxes
def _convert_type_of_image(self, type_of_image: str) -> List[str]:
types_of_image = type_of_image.split(",")
def convert_to_type_of_image(type_of_image: str) -> str:
if type_of_image == "":
return "null"
elif type_of_image == "1":
return "Table"
elif type_of_image == "2":
return "Bar chart"
elif type_of_image == "3":
return "Line chart"
elif type_of_image == "4":
return "Pie chart"
elif type_of_image == "5":
return "Map"
elif type_of_image == "6":
return "Other figures"
elif type_of_image == "7":
return "Mixtured writing style from left to the right and from upside to the downside"
elif type_of_image == "8":
return "Drawings"
elif type_of_image == "9":
return "Others"
else:
raise ValueError(f"Unknown type of image: {type_of_image}")
return [convert_to_type_of_image(t) for t in types_of_image]
def _convert_pdf_category(self, pdf_category: str) -> str:
if not self.config.rename_pdf_category: # type: ignore
return pdf_category
if pdf_category == "Document":
return "Report"
elif pdf_category == "Kouhou":
return "Pamphlet"
else:
assert pdf_category in (
"Slide",
"Website",
), f"Unknown pdf_category: {pdf_category}"
return pdf_category
def _get_pdf_fielpath(self, pdf_name: str, documents_dir: str) -> str:
pdf_filepath = os.path.join(documents_dir, pdf_name)
assert os.path.exists(pdf_filepath), f"File not found: {pdf_filepath}"
return pdf_filepath
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, annotation_path: str, documents_dir: str):
with open(annotation_path) as rf:
for i, line in enumerate(rf):
data = json.loads(line)
data["answer_type"] = self._convert_answer_type(
answer_type=data["answer_type"]
)
data["multiple_select_question"] = (
self._convert_multiple_select_question(
multiple_select_question=data["multiple_select_question"]
)
)
data["pdf_category"] = self._convert_pdf_category(
pdf_category=data["pdf_category"]
)
data["question_number"] = self._convert_question_number(
data["question_number"]
)
data["reason_of_answer_bbox"] = self._convert_reason_of_answer_bbox(
data["reason_of_answer_bbox"]
)
data["type_of_image"] = self._convert_type_of_image(
type_of_image=data["type_of_image"]
)
data["pdf_filepath"] = self._get_pdf_fielpath(
pdf_name=data["pdf_name"],
documents_dir=documents_dir,
)
yield i, data