|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
import re |
|
from dataclasses import dataclass |
|
from typing import List |
|
|
|
import datasets as ds |
|
from datasets.utils.logging import get_logger |
|
|
|
logger = get_logger(__name__) |
|
|
|
_CITATION = """\ |
|
@inproceedings{onami2024jdocqa, |
|
title={JDocQA: Japanese Document Question Answering Dataset for Generative Language Models}, |
|
author={Onami, Eri and Kurita, Shuhei and Miyanishi, Taiki and Watanabe, Taro}, |
|
booktitle={Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)}, |
|
pages={9503--9514}, |
|
year={2024} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Japanese Document Question Answering (JDocQA), a large-scale document-based QA dataset, essentially requiring both visual and textual information to answer questions, which comprises 5,504 documents in PDF format and annotated 11,600 question-and-answer instances in Japanese. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/mizuumi/JDocQA" |
|
|
|
_LICENSE = "JDocQA dataset annotations are distributed under CC BY-SA 4.0. We are delighted to see many derivations from JDocQA! When you create any derivations, e.g., datasets, papers, etc, from JDocQA, please cite our paper accordingly. If your derivations are web-based projects, please cite our paper and include the link to this github page." |
|
|
|
_URLS = { |
|
"annotations": { |
|
"train": "https://raw.githubusercontent.com/mizuumi/JDocQA/main/dataset/annotation_files/jdocqa_train_all.json", |
|
"validation": "https://github.com/mizuumi/JDocQA/raw/main/dataset/annotation_files/jdocqa_validation_all.json", |
|
"test": "https://github.com/mizuumi/JDocQA/raw/main/dataset/annotation_files/jdocqa_test_all.json", |
|
}, |
|
"documents": "https://vlm-lab-fileshare.s3.ap-northeast-1.amazonaws.com/pdf_files.zip", |
|
} |
|
|
|
|
|
@dataclass |
|
class JDocQADatasetConfig(ds.BuilderConfig): |
|
rename_pdf_category: bool = False |
|
|
|
|
|
class JDocQADataset(ds.GeneratorBasedBuilder): |
|
"""A class for loading JDocQA dataset.""" |
|
|
|
VERSION = ds.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
JDocQADatasetConfig( |
|
version=VERSION, |
|
description=_DESCRIPTION, |
|
), |
|
] |
|
|
|
BUILDER_CONFIG_CLASS = JDocQADatasetConfig |
|
|
|
def _info(self) -> ds.DatasetInfo: |
|
answer_type = ds.ClassLabel( |
|
num_classes=4, |
|
names=["yes/no", "factoid", "numerical", "open-ended"], |
|
) |
|
multiple_select_answer = ds.ClassLabel( |
|
num_classes=4, |
|
names=["A", "B", "C", "D"], |
|
) |
|
no_reason = ds.ClassLabel( |
|
num_classes=4, |
|
names=["0", "1", "2", "1,2"], |
|
) |
|
pdf_category = ds.ClassLabel( |
|
num_classes=4, |
|
names=["Report", "Pamphlet", "Slide", "Website"] |
|
if self.config.rename_pdf_category |
|
else ["Document", "Kouhou", "Slide", "Website"], |
|
) |
|
type_of_image = ds.ClassLabel( |
|
num_classes=10, |
|
names=[ |
|
"null", |
|
"Table", |
|
"Bar chart", |
|
"Line chart", |
|
"Pie chart", |
|
"Map", |
|
"Other figures", |
|
"Mixtured writing style from left to the right and from upside to the downside", |
|
"Drawings", |
|
"Others", |
|
], |
|
) |
|
features = ds.Features( |
|
{ |
|
"answer": ds.Value("string"), |
|
"answer_type": answer_type, |
|
"context": ds.Value("string"), |
|
"multiple_select_answer": multiple_select_answer, |
|
"multiple_select_question": ds.Sequence(ds.Value("string")), |
|
"no_reason": no_reason, |
|
"normalized_answer": ds.Value("string"), |
|
"original_answer": ds.Value("string"), |
|
"original_context": ds.Value("string"), |
|
"original_question": ds.Value("string"), |
|
"pdf_category": pdf_category, |
|
"pdf_name": ds.Value("string"), |
|
"question": ds.Value("string"), |
|
"question_number": ds.Sequence(ds.Value("uint64")), |
|
"question_page_number": ds.Value("string"), |
|
"reason_of_answer_bbox": ds.Sequence(ds.Value("string")), |
|
"text_from_ocr_pdf": ds.Value("string"), |
|
"text_from_pdf": ds.Value("string"), |
|
"type_of_image": ds.Sequence(type_of_image), |
|
|
|
|
|
"pdf_filepath": ds.Value("string"), |
|
} |
|
) |
|
return ds.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators( |
|
self, dl_manager: ds.DownloadManager |
|
) -> List[ds.SplitGenerator]: |
|
files = dl_manager.download_and_extract(_URLS) |
|
|
|
tng_ann_filepath = files["annotations"]["train"] |
|
val_ann_filepath = files["annotations"]["validation"] |
|
tst_ann_filepath = files["annotations"]["test"] |
|
|
|
documents_dirpath = os.path.join(files["documents"], "pdf_files") |
|
|
|
return [ |
|
ds.SplitGenerator( |
|
name=ds.Split.TRAIN, |
|
gen_kwargs={ |
|
"annotation_path": tng_ann_filepath, |
|
"documents_dir": documents_dirpath, |
|
}, |
|
), |
|
ds.SplitGenerator( |
|
name=ds.Split.VALIDATION, |
|
gen_kwargs={ |
|
"annotation_path": val_ann_filepath, |
|
"documents_dir": documents_dirpath, |
|
}, |
|
), |
|
ds.SplitGenerator( |
|
name=ds.Split.TEST, |
|
gen_kwargs={ |
|
"annotation_path": tst_ann_filepath, |
|
"documents_dir": documents_dirpath, |
|
}, |
|
), |
|
] |
|
|
|
def _convert_answer_type(self, answer_type: str) -> str: |
|
if answer_type == "1": |
|
return "yes/no" |
|
elif answer_type == "2": |
|
return "factoid" |
|
elif answer_type == "3": |
|
return "numerical" |
|
elif answer_type == "4": |
|
return "open-ended" |
|
else: |
|
raise ValueError(f"Unknown answer type: {answer_type}") |
|
|
|
def _convert_multiple_select_question( |
|
self, multiple_select_question: str |
|
) -> List[str]: |
|
_, qs = multiple_select_question.split("(A)") |
|
|
|
questions = [] |
|
for sep in ("(B)", "(C)", "(D)"): |
|
q, qs = qs.split(sep) |
|
questions.append(q) |
|
questions.append(qs) |
|
|
|
assert ( |
|
len(questions) == 4 |
|
), f"Before: {multiple_select_question}, After: {questions}" |
|
|
|
questions = [question.rstrip("、") for question in questions] |
|
return questions |
|
|
|
def _convert_question_number(self, question_number: str) -> List[int]: |
|
return [int(qn) for qn in question_number.split("-")] |
|
|
|
def _convert_reason_of_answer_bbox(self, reason_of_answer_bbox: str) -> List[str]: |
|
reason_of_answer_bboxes = [ |
|
r for r in re.split(r"[.,、、]", reason_of_answer_bbox) |
|
] |
|
check = [r.isdigit() if r != "" else r == "" for r in reason_of_answer_bboxes] |
|
assert all(check), reason_of_answer_bboxes |
|
return reason_of_answer_bboxes |
|
|
|
def _convert_type_of_image(self, type_of_image: str) -> List[str]: |
|
types_of_image = type_of_image.split(",") |
|
|
|
def convert_to_type_of_image(type_of_image: str) -> str: |
|
if type_of_image == "": |
|
return "null" |
|
elif type_of_image == "1": |
|
return "Table" |
|
elif type_of_image == "2": |
|
return "Bar chart" |
|
elif type_of_image == "3": |
|
return "Line chart" |
|
elif type_of_image == "4": |
|
return "Pie chart" |
|
elif type_of_image == "5": |
|
return "Map" |
|
elif type_of_image == "6": |
|
return "Other figures" |
|
elif type_of_image == "7": |
|
return "Mixtured writing style from left to the right and from upside to the downside" |
|
elif type_of_image == "8": |
|
return "Drawings" |
|
elif type_of_image == "9": |
|
return "Others" |
|
else: |
|
raise ValueError(f"Unknown type of image: {type_of_image}") |
|
|
|
return [convert_to_type_of_image(t) for t in types_of_image] |
|
|
|
def _convert_pdf_category(self, pdf_category: str) -> str: |
|
if not self.config.rename_pdf_category: |
|
return pdf_category |
|
|
|
if pdf_category == "Document": |
|
return "Report" |
|
elif pdf_category == "Kouhou": |
|
return "Pamphlet" |
|
else: |
|
assert pdf_category in ( |
|
"Slide", |
|
"Website", |
|
), f"Unknown pdf_category: {pdf_category}" |
|
return pdf_category |
|
|
|
def _get_pdf_fielpath(self, pdf_name: str, documents_dir: str) -> str: |
|
pdf_filepath = os.path.join(documents_dir, pdf_name) |
|
assert os.path.exists(pdf_filepath), f"File not found: {pdf_filepath}" |
|
return pdf_filepath |
|
|
|
|
|
def _generate_examples(self, annotation_path: str, documents_dir: str): |
|
with open(annotation_path) as rf: |
|
for i, line in enumerate(rf): |
|
data = json.loads(line) |
|
|
|
data["answer_type"] = self._convert_answer_type( |
|
answer_type=data["answer_type"] |
|
) |
|
data["multiple_select_question"] = ( |
|
self._convert_multiple_select_question( |
|
multiple_select_question=data["multiple_select_question"] |
|
) |
|
) |
|
data["pdf_category"] = self._convert_pdf_category( |
|
pdf_category=data["pdf_category"] |
|
) |
|
data["question_number"] = self._convert_question_number( |
|
data["question_number"] |
|
) |
|
data["reason_of_answer_bbox"] = self._convert_reason_of_answer_bbox( |
|
data["reason_of_answer_bbox"] |
|
) |
|
data["type_of_image"] = self._convert_type_of_image( |
|
type_of_image=data["type_of_image"] |
|
) |
|
data["pdf_filepath"] = self._get_pdf_fielpath( |
|
pdf_name=data["pdf_name"], |
|
documents_dir=documents_dir, |
|
) |
|
|
|
yield i, data |
|
|