Datasets:
update for issue of mizuumi/JDocQA#2 (#5)
Browse files- JDocQA.py +66 -35
- README.md +14 -3
- tests/JDocQA_test.py +10 -1
JDocQA.py
CHANGED
@@ -17,6 +17,7 @@
|
|
17 |
import json
|
18 |
import os
|
19 |
import re
|
|
|
20 |
from typing import List
|
21 |
|
22 |
import datasets as ds
|
@@ -57,44 +58,72 @@ _URLS = {
|
|
57 |
}
|
58 |
|
59 |
|
|
|
|
|
|
|
|
|
|
|
60 |
class JDocQADataset(ds.GeneratorBasedBuilder):
|
61 |
"""A class for loading JDocQA dataset."""
|
62 |
|
63 |
VERSION = ds.Version("1.0.0")
|
64 |
|
65 |
BUILDER_CONFIGS = [
|
66 |
-
|
67 |
version=VERSION,
|
68 |
description=_DESCRIPTION,
|
69 |
),
|
70 |
]
|
71 |
|
|
|
|
|
72 |
def _info(self) -> ds.DatasetInfo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
features = ds.Features(
|
74 |
{
|
75 |
"answer": ds.Value("string"),
|
76 |
-
"answer_type":
|
77 |
-
num_classes=4,
|
78 |
-
names=["yes/no", "factoid", "numerical", "open-ended"],
|
79 |
-
),
|
80 |
"context": ds.Value("string"),
|
81 |
-
"multiple_select_answer":
|
82 |
-
num_classes=4,
|
83 |
-
names=["A", "B", "C", "D"],
|
84 |
-
),
|
85 |
"multiple_select_question": ds.Sequence(ds.Value("string")),
|
86 |
-
"no_reason":
|
87 |
-
num_classes=4,
|
88 |
-
names=["0", "1", "2", "1,2"],
|
89 |
-
),
|
90 |
"normalized_answer": ds.Value("string"),
|
91 |
"original_answer": ds.Value("string"),
|
92 |
"original_context": ds.Value("string"),
|
93 |
"original_question": ds.Value("string"),
|
94 |
-
"pdf_category":
|
95 |
-
num_classes=4,
|
96 |
-
names=["Document", "Kouhou", "Slide", "Website"],
|
97 |
-
),
|
98 |
"pdf_name": ds.Value("string"),
|
99 |
"question": ds.Value("string"),
|
100 |
"question_number": ds.Sequence(ds.Value("uint64")),
|
@@ -102,23 +131,7 @@ class JDocQADataset(ds.GeneratorBasedBuilder):
|
|
102 |
"reason_of_answer_bbox": ds.Sequence(ds.Value("string")),
|
103 |
"text_from_ocr_pdf": ds.Value("string"),
|
104 |
"text_from_pdf": ds.Value("string"),
|
105 |
-
"type_of_image": ds.Sequence(
|
106 |
-
ds.ClassLabel(
|
107 |
-
num_classes=10,
|
108 |
-
names=[
|
109 |
-
"Null",
|
110 |
-
"Table",
|
111 |
-
"Bar chart",
|
112 |
-
"Line chart",
|
113 |
-
"Pie chart",
|
114 |
-
"Map",
|
115 |
-
"Other figures",
|
116 |
-
"Mixtured writing style from left to the right and from upside to the downside",
|
117 |
-
"Drawings",
|
118 |
-
"Others",
|
119 |
-
],
|
120 |
-
)
|
121 |
-
),
|
122 |
#
|
123 |
# `pdf_filepath` is added to the original dataset for convenience
|
124 |
"pdf_filepath": ds.Value("string"),
|
@@ -213,7 +226,7 @@ class JDocQADataset(ds.GeneratorBasedBuilder):
|
|
213 |
|
214 |
def convert_to_type_of_image(type_of_image: str) -> str:
|
215 |
if type_of_image == "":
|
216 |
-
return "
|
217 |
elif type_of_image == "1":
|
218 |
return "Table"
|
219 |
elif type_of_image == "2":
|
@@ -237,6 +250,21 @@ class JDocQADataset(ds.GeneratorBasedBuilder):
|
|
237 |
|
238 |
return [convert_to_type_of_image(t) for t in types_of_image]
|
239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
def _get_pdf_fielpath(self, pdf_name: str, documents_dir: str) -> str:
|
241 |
pdf_filepath = os.path.join(documents_dir, pdf_name)
|
242 |
assert os.path.exists(pdf_filepath), f"File not found: {pdf_filepath}"
|
@@ -256,6 +284,9 @@ class JDocQADataset(ds.GeneratorBasedBuilder):
|
|
256 |
multiple_select_question=data["multiple_select_question"]
|
257 |
)
|
258 |
)
|
|
|
|
|
|
|
259 |
data["question_number"] = self._convert_question_number(
|
260 |
data["question_number"]
|
261 |
)
|
|
|
17 |
import json
|
18 |
import os
|
19 |
import re
|
20 |
+
from dataclasses import dataclass
|
21 |
from typing import List
|
22 |
|
23 |
import datasets as ds
|
|
|
58 |
}
|
59 |
|
60 |
|
61 |
+
@dataclass
|
62 |
+
class JDocQADatasetConfig(ds.BuilderConfig):
|
63 |
+
rename_pdf_category: bool = False
|
64 |
+
|
65 |
+
|
66 |
class JDocQADataset(ds.GeneratorBasedBuilder):
|
67 |
"""A class for loading JDocQA dataset."""
|
68 |
|
69 |
VERSION = ds.Version("1.0.0")
|
70 |
|
71 |
BUILDER_CONFIGS = [
|
72 |
+
JDocQADatasetConfig(
|
73 |
version=VERSION,
|
74 |
description=_DESCRIPTION,
|
75 |
),
|
76 |
]
|
77 |
|
78 |
+
BUILDER_CONFIG_CLASS = JDocQADatasetConfig
|
79 |
+
|
80 |
def _info(self) -> ds.DatasetInfo:
|
81 |
+
answer_type = ds.ClassLabel(
|
82 |
+
num_classes=4,
|
83 |
+
names=["yes/no", "factoid", "numerical", "open-ended"],
|
84 |
+
)
|
85 |
+
multiple_select_answer = ds.ClassLabel(
|
86 |
+
num_classes=4,
|
87 |
+
names=["A", "B", "C", "D"],
|
88 |
+
)
|
89 |
+
no_reason = ds.ClassLabel(
|
90 |
+
num_classes=4,
|
91 |
+
names=["0", "1", "2", "1,2"],
|
92 |
+
)
|
93 |
+
pdf_category = ds.ClassLabel(
|
94 |
+
num_classes=4,
|
95 |
+
names=["Report", "Pamphlet", "Slide", "Website"]
|
96 |
+
if self.config.rename_pdf_category # type: ignore
|
97 |
+
else ["Document", "Kouhou", "Slide", "Website"],
|
98 |
+
)
|
99 |
+
type_of_image = ds.ClassLabel(
|
100 |
+
num_classes=10,
|
101 |
+
names=[
|
102 |
+
"null",
|
103 |
+
"Table",
|
104 |
+
"Bar chart",
|
105 |
+
"Line chart",
|
106 |
+
"Pie chart",
|
107 |
+
"Map",
|
108 |
+
"Other figures",
|
109 |
+
"Mixtured writing style from left to the right and from upside to the downside",
|
110 |
+
"Drawings",
|
111 |
+
"Others",
|
112 |
+
],
|
113 |
+
)
|
114 |
features = ds.Features(
|
115 |
{
|
116 |
"answer": ds.Value("string"),
|
117 |
+
"answer_type": answer_type,
|
|
|
|
|
|
|
118 |
"context": ds.Value("string"),
|
119 |
+
"multiple_select_answer": multiple_select_answer,
|
|
|
|
|
|
|
120 |
"multiple_select_question": ds.Sequence(ds.Value("string")),
|
121 |
+
"no_reason": no_reason,
|
|
|
|
|
|
|
122 |
"normalized_answer": ds.Value("string"),
|
123 |
"original_answer": ds.Value("string"),
|
124 |
"original_context": ds.Value("string"),
|
125 |
"original_question": ds.Value("string"),
|
126 |
+
"pdf_category": pdf_category,
|
|
|
|
|
|
|
127 |
"pdf_name": ds.Value("string"),
|
128 |
"question": ds.Value("string"),
|
129 |
"question_number": ds.Sequence(ds.Value("uint64")),
|
|
|
131 |
"reason_of_answer_bbox": ds.Sequence(ds.Value("string")),
|
132 |
"text_from_ocr_pdf": ds.Value("string"),
|
133 |
"text_from_pdf": ds.Value("string"),
|
134 |
+
"type_of_image": ds.Sequence(type_of_image),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
#
|
136 |
# `pdf_filepath` is added to the original dataset for convenience
|
137 |
"pdf_filepath": ds.Value("string"),
|
|
|
226 |
|
227 |
def convert_to_type_of_image(type_of_image: str) -> str:
|
228 |
if type_of_image == "":
|
229 |
+
return "null"
|
230 |
elif type_of_image == "1":
|
231 |
return "Table"
|
232 |
elif type_of_image == "2":
|
|
|
250 |
|
251 |
return [convert_to_type_of_image(t) for t in types_of_image]
|
252 |
|
253 |
+
def _convert_pdf_category(self, pdf_category: str) -> str:
|
254 |
+
if not self.config.rename_pdf_category: # type: ignore
|
255 |
+
return pdf_category
|
256 |
+
|
257 |
+
if pdf_category == "Document":
|
258 |
+
return "Report"
|
259 |
+
elif pdf_category == "Kouhou":
|
260 |
+
return "Pamphlet"
|
261 |
+
else:
|
262 |
+
assert pdf_category in (
|
263 |
+
"Slide",
|
264 |
+
"Website",
|
265 |
+
), f"Unknown pdf_category: {pdf_category}"
|
266 |
+
return pdf_category
|
267 |
+
|
268 |
def _get_pdf_fielpath(self, pdf_name: str, documents_dir: str) -> str:
|
269 |
pdf_filepath = os.path.join(documents_dir, pdf_name)
|
270 |
assert os.path.exists(pdf_filepath), f"File not found: {pdf_filepath}"
|
|
|
284 |
multiple_select_question=data["multiple_select_question"]
|
285 |
)
|
286 |
)
|
287 |
+
data["pdf_category"] = self._convert_pdf_category(
|
288 |
+
pdf_category=data["pdf_category"]
|
289 |
+
)
|
290 |
data["question_number"] = self._convert_question_number(
|
291 |
data["question_number"]
|
292 |
)
|
README.md
CHANGED
@@ -94,7 +94,13 @@ The language data in JDocQA is in Japanese ([BCP-47 ja-JP](https://www.rfc-edito
|
|
94 |
```python
|
95 |
import datasets as ds
|
96 |
|
97 |
-
dataset = ds.load_dataset(
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
print(dataset)
|
100 |
# DatasetDict({
|
@@ -149,7 +155,7 @@ From [JDocQA's README.md](https://github.com/mizuumi/JDocQA/blob/main/dataset/RE
|
|
149 |
- `context`: Removed noises from 'original_context'.
|
150 |
- `multiple_select_answer`:
|
151 |
- `multiple_select_question`:
|
152 |
-
- `no_reason`: Unanswerable question-> 0, Answerable question-> 1
|
153 |
- `normalized_answer`:
|
154 |
- `original_answer`: Annotated answers.
|
155 |
- `original_context`: Extracted texts from PDF.
|
@@ -162,9 +168,14 @@ From [JDocQA's README.md](https://github.com/mizuumi/JDocQA/blob/main/dataset/RE
|
|
162 |
- `reason_of_answer_bbox`:
|
163 |
- `text_from_ocr_pdf`:
|
164 |
- `text_from_pdf`:
|
165 |
-
- `type_of_image`: (1) Table, (2) Bar chart, (3) Line chart, (4) Pie chart, (5) Map, (6) Other figures, (7) Mixtured writing style from left to the right and from upside to the downside, (8) Drawings, (9) Others.
|
166 |
- `pdf_filepath`: full file path to the corresponding PDF file.
|
167 |
|
|
|
|
|
|
|
|
|
|
|
168 |
### Data Splits
|
169 |
|
170 |
From [JDocQA's paper](https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/C3-5.pdf):
|
|
|
94 |
```python
|
95 |
import datasets as ds
|
96 |
|
97 |
+
dataset = ds.load_dataset(
|
98 |
+
path="shunk031/JDocQA",
|
99 |
+
# Rename to the same wording as in the paper: Document -> Report / Kouhou -> Pamphlet
|
100 |
+
rename_pdf_category=True,
|
101 |
+
# Set to True to use loading script for huggingface datasets
|
102 |
+
trust_remote_code=True,
|
103 |
+
)
|
104 |
|
105 |
print(dataset)
|
106 |
# DatasetDict({
|
|
|
155 |
- `context`: Removed noises from 'original_context'.
|
156 |
- `multiple_select_answer`:
|
157 |
- `multiple_select_question`:
|
158 |
+
- `no_reason`: Unanswerable question -> 0, Answerable question -> 1, Multi page question -> 2. They can be jointly flagged such as `1,2`.
|
159 |
- `normalized_answer`:
|
160 |
- `original_answer`: Annotated answers.
|
161 |
- `original_context`: Extracted texts from PDF.
|
|
|
168 |
- `reason_of_answer_bbox`:
|
169 |
- `text_from_ocr_pdf`:
|
170 |
- `text_from_pdf`:
|
171 |
+
- `type_of_image`: (1) Table, (2) Bar chart, (3) Line chart, (4) Pie chart, (5) Map, (6) Other figures, (7) Mixtured writing style from left to the right and from upside to the downside, (8) Drawings, (9) Others. Note that this enrty is for statistical purpose in our paper, and some labels are missing, which are represented as `null`.
|
172 |
- `pdf_filepath`: full file path to the corresponding PDF file.
|
173 |
|
174 |
+
> ## pdf_category
|
175 |
+
> We renamed the several category names upon the paper for the interpretability.
|
176 |
+
> - `Document` category in the PDF set as `Report` in the paper.
|
177 |
+
> - `Kouhou` category in the PDF set as `Pamphlet` in the paper.
|
178 |
+
|
179 |
### Data Splits
|
180 |
|
181 |
From [JDocQA's paper](https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/C3-5.pdf):
|
tests/JDocQA_test.py
CHANGED
@@ -21,13 +21,22 @@ def dataset_path(dataset_name: str) -> str:
|
|
21 |
"we will skip running it on CI."
|
22 |
),
|
23 |
)
|
|
|
|
|
|
|
|
|
24 |
def test_load_dataset(
|
25 |
dataset_path: str,
|
|
|
26 |
expected_num_train: int = 9290,
|
27 |
expected_num_validation: int = 1134,
|
28 |
expected_num_test: int = 1176,
|
29 |
):
|
30 |
-
dataset = ds.load_dataset(
|
|
|
|
|
|
|
|
|
31 |
assert isinstance(dataset, ds.DatasetDict)
|
32 |
|
33 |
assert dataset["train"].num_rows == expected_num_train
|
|
|
21 |
"we will skip running it on CI."
|
22 |
),
|
23 |
)
|
24 |
+
@pytest.mark.parametrize(
|
25 |
+
argnames="rename_pdf_category",
|
26 |
+
argvalues=[True, False],
|
27 |
+
)
|
28 |
def test_load_dataset(
|
29 |
dataset_path: str,
|
30 |
+
rename_pdf_category: bool,
|
31 |
expected_num_train: int = 9290,
|
32 |
expected_num_validation: int = 1134,
|
33 |
expected_num_test: int = 1176,
|
34 |
):
|
35 |
+
dataset = ds.load_dataset(
|
36 |
+
path=dataset_path,
|
37 |
+
rename_pdf_category=rename_pdf_category,
|
38 |
+
trust_remote_code=True,
|
39 |
+
)
|
40 |
assert isinstance(dataset, ds.DatasetDict)
|
41 |
|
42 |
assert dataset["train"].num_rows == expected_num_train
|