shunk031 commited on
Commit
0c12e64
·
unverified ·
1 Parent(s): d2b0ffd

Initialize (#1)

Browse files

* add poetry files

* add scripts

* add .gitignore

* add files

* update README.md

* update script

* update

* update README.md

* add `push_to_hub.yaml`

* update

.github/workflows/ci.yaml ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: CI
2
+
3
+ on:
4
+ push:
5
+ branches: [main]
6
+ pull_request:
7
+ branches: [main]
8
+ paths-ignore:
9
+ - "README.md"
10
+
11
+ jobs:
12
+ test:
13
+ runs-on: ubuntu-latest
14
+ strategy:
15
+ matrix:
16
+ python-version: ["3.9", "3.10"]
17
+
18
+ steps:
19
+ - uses: actions/checkout@v3
20
+
21
+ - name: Check for TODO and FIXME
22
+ run: |
23
+ grep -n --exclude-dir={.git,.github} -rE "FIXME" | while read -r line
24
+ do
25
+ file=$(echo $line | cut -d: -f1)
26
+ lineno=$(echo $line | cut -d: -f2)
27
+ echo "::warning file=$file,line=$lineno::${line}"
28
+ done
29
+
30
+ if grep --exclude-dir={.git,.github} -rE "TODO"; then
31
+ exit 1
32
+ fi
33
+
34
+ - name: Set up Python ${{ matrix.python-version }}
35
+ uses: actions/setup-python@v4
36
+ with:
37
+ python-version: ${{ matrix.python-version }}
38
+
39
+ - name: Install dependencies
40
+ run: |
41
+ pip install -U pip setuptools wheel poetry
42
+ poetry install
43
+
44
+ - name: Format
45
+ run: |
46
+ poetry run ruff format --check --diff .
47
+
48
+ - name: Lint
49
+ run: |
50
+ poetry run ruff check --output-format=github .
51
+
52
+ - name: Type check
53
+ run: |
54
+ poetry run mypy .
55
+
56
+ - name: Run tests
57
+ run: |
58
+ poetry run pytest --color=yes -rf
.github/workflows/push_to_hub.yaml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Sync to Hugging Face Hub
2
+
3
+ on:
4
+ workflow_run:
5
+ workflows:
6
+ - CI
7
+ branches:
8
+ - main
9
+ types:
10
+ - completed
11
+
12
+ jobs:
13
+ push_to_hub:
14
+ runs-on: ubuntu-latest
15
+
16
+ steps:
17
+ - name: Checkout repository
18
+ uses: actions/checkout@v4
19
+ - name: Push to Huggingface hub
20
+ env:
21
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
22
+ HF_USERNAME: ${{ secrets.HF_USERNAME }}
23
+ run: |
24
+ git fetch --unshallow
25
+ git push --force https://${HF_USERNAME}:${HF_TOKEN}@huggingface.co/datasets/${HF_USERNAME}/JDocQA main
.gitignore ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Created by https://www.toptal.com/developers/gitignore/api/python
2
+ # Edit at https://www.toptal.com/developers/gitignore?templates=python
3
+
4
+ ### Python ###
5
+ # Byte-compiled / optimized / DLL files
6
+ __pycache__/
7
+ *.py[cod]
8
+ *$py.class
9
+
10
+ # C extensions
11
+ *.so
12
+
13
+ # Distribution / packaging
14
+ .Python
15
+ build/
16
+ develop-eggs/
17
+ dist/
18
+ downloads/
19
+ eggs/
20
+ .eggs/
21
+ lib/
22
+ lib64/
23
+ parts/
24
+ sdist/
25
+ var/
26
+ wheels/
27
+ share/python-wheels/
28
+ *.egg-info/
29
+ .installed.cfg
30
+ *.egg
31
+ MANIFEST
32
+
33
+ # PyInstaller
34
+ # Usually these files are written by a python script from a template
35
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
36
+ *.manifest
37
+ *.spec
38
+
39
+ # Installer logs
40
+ pip-log.txt
41
+ pip-delete-this-directory.txt
42
+
43
+ # Unit test / coverage reports
44
+ htmlcov/
45
+ .tox/
46
+ .nox/
47
+ .coverage
48
+ .coverage.*
49
+ .cache
50
+ nosetests.xml
51
+ coverage.xml
52
+ *.cover
53
+ *.py,cover
54
+ .hypothesis/
55
+ .pytest_cache/
56
+ cover/
57
+
58
+ # Translations
59
+ *.mo
60
+ *.pot
61
+
62
+ # Django stuff:
63
+ *.log
64
+ local_settings.py
65
+ db.sqlite3
66
+ db.sqlite3-journal
67
+
68
+ # Flask stuff:
69
+ instance/
70
+ .webassets-cache
71
+
72
+ # Scrapy stuff:
73
+ .scrapy
74
+
75
+ # Sphinx documentation
76
+ docs/_build/
77
+
78
+ # PyBuilder
79
+ .pybuilder/
80
+ target/
81
+
82
+ # Jupyter Notebook
83
+ .ipynb_checkpoints
84
+
85
+ # IPython
86
+ profile_default/
87
+ ipython_config.py
88
+
89
+ # pyenv
90
+ # For a library or package, you might want to ignore these files since the code is
91
+ # intended to run in multiple environments; otherwise, check them in:
92
+ .python-version
93
+
94
+ # pipenv
95
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
96
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
97
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
98
+ # install all needed dependencies.
99
+ #Pipfile.lock
100
+
101
+ # poetry
102
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
103
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
104
+ # commonly ignored for libraries.
105
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
106
+ #poetry.lock
107
+
108
+ # pdm
109
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
110
+ #pdm.lock
111
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
112
+ # in version control.
113
+ # https://pdm.fming.dev/#use-with-ide
114
+ .pdm.toml
115
+
116
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
117
+ __pypackages__/
118
+
119
+ # Celery stuff
120
+ celerybeat-schedule
121
+ celerybeat.pid
122
+
123
+ # SageMath parsed files
124
+ *.sage.py
125
+
126
+ # Environments
127
+ .env
128
+ .venv
129
+ env/
130
+ venv/
131
+ ENV/
132
+ env.bak/
133
+ venv.bak/
134
+
135
+ # Spyder project settings
136
+ .spyderproject
137
+ .spyproject
138
+
139
+ # Rope project settings
140
+ .ropeproject
141
+
142
+ # mkdocs documentation
143
+ /site
144
+
145
+ # mypy
146
+ .mypy_cache/
147
+ .dmypy.json
148
+ dmypy.json
149
+
150
+ # Pyre type checker
151
+ .pyre/
152
+
153
+ # pytype static type analyzer
154
+ .pytype/
155
+
156
+ # Cython debug symbols
157
+ cython_debug/
158
+
159
+ # PyCharm
160
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
161
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
162
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
163
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
164
+ #.idea/
165
+
166
+ ### Python Patch ###
167
+ # Poetry local configuration file - https://python-poetry.org/docs/configuration/#local-configuration
168
+ poetry.toml
169
+
170
+ # ruff
171
+ .ruff_cache/
172
+
173
+ # LSP config files
174
+ pyrightconfig.json
175
+
176
+ # End of https://www.toptal.com/developers/gitignore/api/python
JDocQA.py ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 Shunsuke Kitada and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ #
15
+ # This script was generated from shunk031/cookiecutter-huggingface-datasets.
16
+ #
17
+ import json
18
+ import os
19
+ import re
20
+ from typing import List
21
+
22
+ import datasets as ds
23
+ from datasets.utils.logging import get_logger
24
+
25
+ logger = get_logger(__name__)
26
+
27
+ _CITATION = """\
28
+ @inproceedings{JDocQA_2024,
29
+ title = "JDocQA: Japanese Document Question Answering Dataset for Generative Language Models",
30
+ author = "Onami, Eri and
31
+ Kurita, Shuhei and
32
+ Miyanishi, Taiki and
33
+ Watanabe, Taro",
34
+ booktitle = "The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation",
35
+ month = may,
36
+ year = "2024",
37
+ address = "Trino, Italy",
38
+ abstract = "Document question answering is a task of question answering on given documents such as reports, slides, pamphlets, and websites, and it is a truly demanding task as paper and electronic forms of documents are so common in our society. This is known as a quite challenging task because it requires not only text understanding but also understanding of figures and tables, and hence visual question answering (VQA) methods are often examined in addition to textual approaches. We introduce Japanese Document Question Answering (JDocQA), a large-scale document-based QA dataset, essentially requiring both visual and textual information to answer questions, which comprises 5,504 documents in PDF format and annotated 11,600 question-and-answer instances in Japanese. Each QA instance includes references to the document pages and bounding boxes for the answer clues. We incorporate multiple categories of questions and unanswerable questions from the document for realistic question-answering applications. We empirically evaluate the effectiveness of our dataset with text-based large language models (LLMs) and multimodal models. Incorporating unanswerable questions in finetuning may contribute to harnessing the so-called hallucination generation.",
39
+ }
40
+ """
41
+
42
+ _DESCRIPTION = """\
43
+ Japanese Document Question Answering (JDocQA), a large-scale document-based QA dataset, essentially requiring both visual and textual information to answer questions, which comprises 5,504 documents in PDF format and annotated 11,600 question-and-answer instances in Japanese.
44
+ """
45
+
46
+ _HOMEPAGE = "https://github.com/mizuumi/JDocQA"
47
+
48
+ _LICENSE = "JDocQA dataset annotations are distributed under CC BY-SA 4.0."
49
+
50
+ _URLS = {
51
+ "annotations": {
52
+ "train": "https://raw.githubusercontent.com/mizuumi/JDocQA/main/dataset/annotation_files/jdocqa_train_all.json",
53
+ "validation": "https://github.com/mizuumi/JDocQA/raw/main/dataset/annotation_files/jdocqa_validation_all.json",
54
+ "test": "https://github.com/mizuumi/JDocQA/raw/main/dataset/annotation_files/jdocqa_test_all.json",
55
+ },
56
+ "documents": "https://vlm-lab-fileshare.s3.ap-northeast-1.amazonaws.com/pdf_files.zip",
57
+ }
58
+
59
+
60
+ class JDocQADataset(ds.GeneratorBasedBuilder):
61
+ """A class for loading JDocQA dataset."""
62
+
63
+ VERSION = ds.Version("1.0.0")
64
+
65
+ BUILDER_CONFIGS = [
66
+ ds.BuilderConfig(
67
+ version=VERSION,
68
+ description=_DESCRIPTION,
69
+ ),
70
+ ]
71
+
72
+ def _info(self) -> ds.DatasetInfo:
73
+ features = ds.Features(
74
+ {
75
+ "answer": ds.Value("string"),
76
+ "answer_type": ds.ClassLabel(
77
+ num_classes=4,
78
+ names=["yes/no", "factoid", "numerical", "open-ended"],
79
+ ),
80
+ "context": ds.Value("string"),
81
+ "multiple_select_answer": ds.ClassLabel(
82
+ num_classes=4,
83
+ names=["A", "B", "C", "D"],
84
+ ),
85
+ "multiple_select_question": ds.Sequence(ds.Value("string")),
86
+ "no_reason": ds.ClassLabel(
87
+ num_classes=4,
88
+ names=["0", "1", "2", "1,2"],
89
+ ),
90
+ "normalized_answer": ds.Value("string"),
91
+ "original_answer": ds.Value("string"),
92
+ "original_context": ds.Value("string"),
93
+ "original_question": ds.Value("string"),
94
+ "pdf_category": ds.ClassLabel(
95
+ num_classes=4,
96
+ names=["Document", "Kouhou", "Slide", "Website"],
97
+ ),
98
+ "pdf_name": ds.Value("string"),
99
+ "question": ds.Value("string"),
100
+ "question_number": ds.Sequence(ds.Value("uint64")),
101
+ "question_page_number": ds.Value("string"),
102
+ "reason_of_answer_bbox": ds.Sequence(ds.Value("string")),
103
+ "text_from_ocr_pdf": ds.Value("string"),
104
+ "text_from_pdf": ds.Value("string"),
105
+ "type_of_image": ds.Sequence(
106
+ ds.ClassLabel(
107
+ num_classes=10,
108
+ names=[
109
+ "Null",
110
+ "Table",
111
+ "Bar chart",
112
+ "Line chart",
113
+ "Pie chart",
114
+ "Map",
115
+ "Other figures",
116
+ "Mixtured writing style from left to the right and from upside to the downside",
117
+ "Drawings",
118
+ "Others",
119
+ ],
120
+ )
121
+ ),
122
+ #
123
+ # `pdf_filepath` is added to the original dataset for convenience
124
+ "pdf_filepath": ds.Value("string"),
125
+ }
126
+ )
127
+ return ds.DatasetInfo(
128
+ description=_DESCRIPTION,
129
+ features=features,
130
+ homepage=_HOMEPAGE,
131
+ license=_LICENSE,
132
+ citation=_CITATION,
133
+ )
134
+
135
+ def _split_generators(
136
+ self, dl_manager: ds.DownloadManager
137
+ ) -> List[ds.SplitGenerator]:
138
+ files = dl_manager.download_and_extract(_URLS)
139
+
140
+ tng_ann_filepath = files["annotations"]["train"] # type: ignore
141
+ val_ann_filepath = files["annotations"]["validation"] # type: ignore
142
+ tst_ann_filepath = files["annotations"]["test"] # type: ignore
143
+
144
+ documents_dirpath = os.path.join(files["documents"], "pdf_files") # type: ignore
145
+
146
+ return [
147
+ ds.SplitGenerator(
148
+ name=ds.Split.TRAIN, # type: ignore
149
+ gen_kwargs={
150
+ "annotation_path": tng_ann_filepath,
151
+ "documents_dir": documents_dirpath,
152
+ },
153
+ ),
154
+ ds.SplitGenerator(
155
+ name=ds.Split.VALIDATION, # type: ignore
156
+ gen_kwargs={
157
+ "annotation_path": val_ann_filepath,
158
+ "documents_dir": documents_dirpath,
159
+ },
160
+ ),
161
+ ds.SplitGenerator(
162
+ name=ds.Split.TEST, # type: ignore
163
+ gen_kwargs={
164
+ "annotation_path": tst_ann_filepath,
165
+ "documents_dir": documents_dirpath,
166
+ },
167
+ ),
168
+ ]
169
+
170
+ def _convert_answer_type(self, answer_type: str) -> str:
171
+ if answer_type == "1":
172
+ return "yes/no"
173
+ elif answer_type == "2":
174
+ return "factoid"
175
+ elif answer_type == "3":
176
+ return "numerical"
177
+ elif answer_type == "4":
178
+ return "open-ended"
179
+ else:
180
+ raise ValueError(f"Unknown answer type: {answer_type}")
181
+
182
+ def _convert_multiple_select_question(
183
+ self, multiple_select_question: str
184
+ ) -> List[str]:
185
+ _, qs = multiple_select_question.split("(A)")
186
+
187
+ questions = []
188
+ for sep in ("(B)", "(C)", "(D)"):
189
+ q, qs = qs.split(sep)
190
+ questions.append(q)
191
+ questions.append(qs)
192
+
193
+ assert (
194
+ len(questions) == 4
195
+ ), f"Before: {multiple_select_question}, After: {questions}"
196
+
197
+ questions = [question.rstrip("、") for question in questions]
198
+ return questions
199
+
200
+ def _convert_question_number(self, question_number: str) -> List[int]:
201
+ return [int(qn) for qn in question_number.split("-")]
202
+
203
+ def _convert_reason_of_answer_bbox(self, reason_of_answer_bbox: str) -> List[str]:
204
+ reason_of_answer_bboxes = [
205
+ r for r in re.split(r"[.,、、]", reason_of_answer_bbox)
206
+ ]
207
+ check = [r.isdigit() if r != "" else r == "" for r in reason_of_answer_bboxes]
208
+ assert all(check), reason_of_answer_bboxes
209
+ return reason_of_answer_bboxes
210
+
211
+ def _convert_type_of_image(self, type_of_image: str) -> List[str]:
212
+ types_of_image = type_of_image.split(",")
213
+
214
+ def convert_to_type_of_image(type_of_image: str) -> str:
215
+ if type_of_image == "":
216
+ return "Null"
217
+ elif type_of_image == "1":
218
+ return "Table"
219
+ elif type_of_image == "2":
220
+ return "Bar chart"
221
+ elif type_of_image == "3":
222
+ return "Line chart"
223
+ elif type_of_image == "4":
224
+ return "Pie chart"
225
+ elif type_of_image == "5":
226
+ return "Map"
227
+ elif type_of_image == "6":
228
+ return "Other figures"
229
+ elif type_of_image == "7":
230
+ return "Mixtured writing style from left to the right and from upside to the downside"
231
+ elif type_of_image == "8":
232
+ return "Drawings"
233
+ elif type_of_image == "9":
234
+ return "Others"
235
+ else:
236
+ raise ValueError(f"Unknown type of image: {type_of_image}")
237
+
238
+ return [convert_to_type_of_image(t) for t in types_of_image]
239
+
240
+ def _get_pdf_fielpath(self, pdf_name: str, documents_dir: str) -> str:
241
+ pdf_filepath = os.path.join(documents_dir, pdf_name)
242
+ assert os.path.exists(pdf_filepath), f"File not found: {pdf_filepath}"
243
+ return pdf_filepath
244
+
245
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
246
+ def _generate_examples(self, annotation_path: str, documents_dir: str):
247
+ with open(annotation_path) as rf:
248
+ for i, line in enumerate(rf):
249
+ data = json.loads(line)
250
+
251
+ data["answer_type"] = self._convert_answer_type(
252
+ answer_type=data["answer_type"]
253
+ )
254
+ data["multiple_select_question"] = (
255
+ self._convert_multiple_select_question(
256
+ multiple_select_question=data["multiple_select_question"]
257
+ )
258
+ )
259
+ data["question_number"] = self._convert_question_number(
260
+ data["question_number"]
261
+ )
262
+ data["reason_of_answer_bbox"] = self._convert_reason_of_answer_bbox(
263
+ data["reason_of_answer_bbox"]
264
+ )
265
+ data["type_of_image"] = self._convert_type_of_image(
266
+ type_of_image=data["type_of_image"]
267
+ )
268
+ data["pdf_filepath"] = self._get_pdf_fielpath(
269
+ pdf_name=data["pdf_name"],
270
+ documents_dir=documents_dir,
271
+ )
272
+
273
+ yield i, data
README.md ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ language:
5
+ - ja
6
+ language_creators:
7
+ - found
8
+ license:
9
+ - cc-by-sa-4.0
10
+ multilinguality:
11
+ - monolingual
12
+ pretty_name: JDocQA
13
+ size_categories:
14
+ - 1K<n<10K
15
+ source_datasets:
16
+ - original
17
+ tags: []
18
+ task_categories:
19
+ - question-answering
20
+ task_ids:
21
+ - extractive-qa
22
+ - open-domain-qa
23
+ - closed-domain-qa
24
+ ---
25
+
26
+ # Dataset Card for JDocQA
27
+
28
+ [![CI](https://github.com/shunk031/huggingface-datasets_JDocQA/actions/workflows/ci.yaml/badge.svg)](https://github.com/shunk031/huggingface-datasets_JDocQA/actions/workflows/ci.yaml)
29
+ [![Sync HF](https://github.com/shunk031/huggingface-datasets_JDocQA/actions/workflows/push_to_hub.yaml/badge.svg)](https://github.com/shunk031/huggingface-datasets_JDocQA/actions/workflows/push_to_hub.yaml)
30
+
31
+ ## Table of Contents
32
+ - [Dataset Card Creation Guide](#dataset-card-creation-guide)
33
+ - [Table of Contents](#table-of-contents)
34
+ - [Dataset Description](#dataset-description)
35
+ - [Dataset Summary](#dataset-summary)
36
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
37
+ - [Languages](#languages)
38
+ - [Dataset Structure](#dataset-structure)
39
+ - [Data Instances](#data-instances)
40
+ - [Data Fields](#data-fields)
41
+ - [Data Splits](#data-splits)
42
+ - [Dataset Creation](#dataset-creation)
43
+ - [Curation Rationale](#curation-rationale)
44
+ - [Source Data](#source-data)
45
+ - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
46
+ - [Who are the source language producers?](#who-are-the-source-language-producers)
47
+ - [Annotations](#annotations)
48
+ - [Annotation process](#annotation-process)
49
+ - [Who are the annotators?](#who-are-the-annotators)
50
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
51
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
52
+ - [Social Impact of Dataset](#social-impact-of-dataset)
53
+ - [Discussion of Biases](#discussion-of-biases)
54
+ - [Other Known Limitations](#other-known-limitations)
55
+ - [Additional Information](#additional-information)
56
+ - [Dataset Curators](#dataset-curators)
57
+ - [Licensing Information](#licensing-information)
58
+ - [Citation Information](#citation-information)
59
+ - [Contributions](#contributions)
60
+
61
+ ## Dataset Description
62
+
63
+ - **Homepage:** https://github.com/mizuumi/JDocQA
64
+ - **Repository:** https://github.com/shunk031/huggingface-datasets_JDocQA
65
+ - **Paper (Preprint):** https://arxiv.org/abs/2403.19454
66
+
67
+ ### Dataset Summary
68
+
69
+ From [JDocQA's paper](https://arxiv.org/abs/2403.19454):
70
+
71
+ > Japanese Document Question Answering (JDocQA), a large-scale document-based QA dataset, essentially requiring both visual and textual information to answer questions, which comprises 5,504 documents in PDF format and annotated 11,600 question-and-answer instances in Japanese.
72
+
73
+ ### Supported Tasks and Leaderboards
74
+
75
+ From [JDocQA's paper](https://arxiv.org/abs/2403.19454):
76
+
77
+ > We consider generative question answering where a model generates a textual answer following the document context and textual question. For realistic applications of a wide range of user questions for documents, we prepare four categories of questions: **(1) yes/no**, **(2) factoid**, **(3) numerical**, and **(4) open-ended**.
78
+ >
79
+ > - In **yes/no questions**, answers are “yes” or “no.”
80
+ > - In **factoid questions**, answers are some facts, such as named entities, that typically appear in the given documents.
81
+ > - In **numerical questions**, answers are numeric values, often including some numerals (some units, e.g., km or Japanese numerals such as “8個 (objects)” and “8人 (persons)”). These numeric values are written in the documents or are calculated from other numbers in the documents.
82
+ > - In **open-ended questions**, free-form responses are required. For such questions, we aim to assess complex comprehension abilities, such as the ability to form opinions or brief explanations based on the provided contexts and questions.
83
+ >
84
+ > Figure 1 presents samples of these four categories of questions. All examples include diverse images and question types related to some Japanese documents collected. We also include unanswerable questions for each question category.
85
+
86
+ ### Languages
87
+
88
+ The language data in JDocQA is in Japanese ([BCP-47 ja-JP](https://www.rfc-editor.org/info/bcp47)).
89
+
90
+ ## Dataset Structure
91
+
92
+ ### Data Instances
93
+
94
+ ```python
95
+ import datasets as ds
96
+
97
+ dataset = ds.load_dataset(path=dataset_path, trust_remote_code=True)
98
+
99
+ print(dataset)
100
+ # DatasetDict({
101
+ # train: Dataset({
102
+ # features: ['answer', 'answer_type', 'context', 'multiple_select_answer', 'multiple_select_question', 'no_reason', 'normalized_answer', 'original_answer', 'original_context', 'original_question', 'pdf_category', 'pdf_name', 'question', 'question_number', 'question_page_number', 'reason_of_answer_bbox', 'text_from_ocr_pdf', 'text_from_pdf', 'type_of_image', 'pdf_filepath'],
103
+ # num_rows: 9290
104
+ # })
105
+ # validation: Dataset({
106
+ # features: ['answer', 'answer_type', 'context', 'multiple_select_answer', 'multiple_select_question', 'no_reason', 'normalized_answer', 'original_answer', 'original_context', 'original_question', 'pdf_category', 'pdf_name', 'question', 'question_number', 'question_page_number', 'reason_of_answer_bbox', 'text_from_ocr_pdf', 'text_from_pdf', 'type_of_image', 'pdf_filepath'],
107
+ # num_rows: 1134
108
+ # })
109
+ # test: Dataset({
110
+ # features: ['answer', 'answer_type', 'context', 'multiple_select_answer', 'multiple_select_question', 'no_reason', 'normalized_answer', 'original_answer', 'original_context', 'original_question', 'pdf_category', 'pdf_name', 'question', 'question_number', 'question_page_number', 'reason_of_answer_bbox', 'text_from_ocr_pdf', 'text_from_pdf', 'type_of_image', 'pdf_filepath'],
111
+ # num_rows: 1176
112
+ # })
113
+ # })
114
+ ```
115
+
116
+ An example of the JDocQA dataset (training set) looks as follows:
117
+
118
+ ```json
119
+ {
120
+ "answer": "本文中に記載がありません",
121
+ "answer_type": 3,
122
+ "context": "_II.調査内容(2.虹本マニュアルの策定)(3)基本マニュアルの記載項目前述の方針等を踏まえ、基本マニュアルの具体的な記載項目(目次だて)は以下のとおりとする。小項目・内容Iはじめにマニュアルの目的、立会義務_(消防法第13条第3項)安全対策の基本事項(SS立会い者とローリー乗務員による相互確認・相互協力の重要性)ローリー荷卸しの手順の基本的流れ ※詳細版のみIIローリー荷邊し時の作業内容1ローリー到着時(荷爺し前)1.ローリー停車位置の確認:計導2.納品書の相互確認3.アースの接続4.消火器の配置5.積荷の相互確認6.地下タンク和在庫及び和荷卸し数量の確認7・詳細版には、各項目ごとに、_-SS立会い者、ローリー乗務2荷邊し時(ホースの結合)03-.注油口の確認、ホースの結合を記載3.ベーパー回収ホース接続ee4荷卸し作業中の安全馬視特に重要な基本事3荷卸し終了時1.配管内、ホース内の残油の確認2.注油口の確認ハッチ内残油確認3.在庫確認4.5.後片付け6.ローリーの退出自事故・災害時の対処(初動対応)1コンタミ(混油)事故発見時(緊急処置)、連絡2オーバーフロー(漏油)事故発見時(緊急処置)、連絡3火災発見時(緊急処置)、初期消火IV通報・緊急連絡緊急時連絡先、通報内容参考チェックリスト例",
123
+ "multiple_select_answer": 3,
124
+ "multiple_select_question": ["はい", "いいえ", "わからない", "本文中に記載が見つけられませんでした"],
125
+ "no_reason": 0,
126
+ "normalized_answer": "本文中に記載がありません",
127
+ "original_answer": "本文中に記載が見つけられませんでした",
128
+ "original_context": "_II.調査内容(2.虹本マニュアルの策定)(3)基本マニュアルの記載項目前述の方針等を踏まえ、基本マニュアルの具体的な記載項目(目次だて)は以下のとおりとする。小項目・内容Iはじめにマニュアルの目的、立会義務_(消防法第13条第3項)安全対策の基本事項(SS立会い者とローリー乗務員による相互確認・相互協力の重要性)ローリー荷卸しの手順の基本的流れ ※詳細版のみIIローリー荷邊し時の作業内容1ローリー到着時(荷爺し前)1.ローリー停車位置の確認:計導2.納品書の相互確認3.アースの接続4.消火器の配置5.積荷の相互確認6.地下タンク和在庫及び和荷卸し数量の確認7・詳細版には、各項目ごとに、_-SS立会い者、ローリー乗務2荷邊し時(ホースの結合)03-.注油口の確認、ホースの結合を記載3.ベーパー回収ホース接続ee4荷卸し作業中の安全馬視特に重要な基本事3 荷卸し終了時1.配管内、ホース内の残油の確認2.注油口の確認ハッチ内残油確認3.在庫確認4.5.後片付け6.ローリーの退出自事故・災害時の対処(初動対応)1コンタミ(混油)事故発見時(緊急処置)、連絡2オーバーフロー(漏油)事故発見時(緊急処置)、連絡3火災発見時(緊急処置)、初期消火IV通報・緊急連絡緊急時連絡先、通報内容参考チェックリスト例",
129
+ "original_question": "基本マニュアルの具体的な記載項目としている事故・災害時の対処の中で、オーバーフロー(漏油)事故が起こった場合は発見時にどのような処置が求められますか?",
130
+ "pdf_category": 2,
131
+ "pdf_name": "public_document00152.pdf",
132
+ "question": "基本マニュアルの具体的な記載項目としている事故・災害時の対処の中で、オーバーフロー(漏油)事故が起こった場合は発見時にどのような処置が求められますか?\n解答は自由に記述してください。",
133
+ "question_number": [4, 656, 1, 4],
134
+ "question_page_number": "9",
135
+ "reason_of_answer_bbox": [""],
136
+ "text_from_ocr_pdf": "_II.調査内容(2.虹本マニュアルの策定)(3)基本マニュアルの記載項目前述の方針等を踏まえ、基本マニュアルの具体的な記載項目(目次だて)は以下のとおりとする。小項目・内容Iはじめにマニュアルの目的、立会義務_(消防法第13条第3項)安全対策の基本事項(SS立会い者とローリー乗務員による相互確認・相互協力の重要性)ローリー荷卸しの手順の基本的流れ ※詳細版のみIIローリー荷邊し時の作業内容1ローリー到着時(荷爺し前)1.ローリー停車位置の確認:計導2.納品書の相互確認3.アースの接続4.消火器の配置5.積荷の相互確認6.地下タンク和在庫及び和荷卸し数量の確認7・詳細版には、各項目ごとに、_-SS立会い者、ローリー乗務2荷邊し時(ホースの結合)03-.注油口の確認、ホースの結合を記載3.ベーパー回収ホース接続ee4荷卸し作業中の安全馬視特に重要な基本事3荷卸し終了時1.配管内、ホース内の残油の確認2.注油口の確認ハッチ内残油確認3.在庫確認4.5.後片付け6.ローリーの退出自事故・災害時の対処(初動対応)1コンタミ(混油)事故発見時(緊急処置)、連絡2オーバーフロー(漏油)事故発見時(緊急処置)、連絡3火災発見時(緊急処置)、初期消火IV通報・緊急連絡緊急時連絡先、通報内容参考チェックリスト例",
137
+ "text_from_pdf": "",
138
+ "type_of_image": [0],
139
+ "pdf_filepath": "/home/shunk031/.cache/huggingface/datasets/downloads/extracted/f3481b9f65c75efec1e5398f76bd8347e64661573961b69423568699f1d7083a/pdf_files/public_document00152.pdf"
140
+ }
141
+ ```
142
+
143
+ ### Data Fields
144
+
145
+ From [JDocQA's README.md](https://github.com/mizuumi/JDocQA/blob/main/dataset/README.md) and [the paper](https://arxiv.org/abs/2403.19454):
146
+
147
+ - `answer`:
148
+ - `answer_type`: (1) Yes/No questions, (2) Factoid questions, (3) Numerical questions, (4) Open-ended questions.
149
+ - `context`: Removed noises from 'original_context'.
150
+ - `multiple_select_answer`:
151
+ - `multiple_select_question`:
152
+ - `no_reason`: Unanswerable question-> 0, Answerable question-> 1
153
+ - `normalized_answer`:
154
+ - `original_answer`: Annotated answers.
155
+ - `original_context`: Extracted texts from PDF.
156
+ - `original_question`: Annotated questions.
157
+ - `pdf_category`: Document category.
158
+ - `pdf_name`: PDF name.
159
+ - `question`: Question query for models.
160
+ - `question_number`:
161
+ - `question_page_number`: Where annotators found answer of the questions.
162
+ - `reason_of_answer_bbox`:
163
+ - `text_from_ocr_pdf`:
164
+ - `text_from_pdf`:
165
+ - `type_of_image`: (1) Table, (2) Bar chart, (3) Line chart, (4) Pie chart, (5) Map, (6) Other figures, (7) Mixtured writing style from left to the right and from upside to the downside, (8) Drawings, (9) Others.
166
+ - `pdf_filepath`: full file path to the corresponding PDF file.
167
+
168
+ ### Data Splits
169
+
170
+ From [JDocQA's paper](https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/C3-5.pdf):
171
+
172
+ > 学習,検定,テストセットにそれぞれ 9,290 件,1,134 件,1,176 件の質問応答が含まれるようにデータセット全体を分割した.同一 PDF ファイルは必ず同一の分割に出現する.
173
+
174
+ ## Dataset Creation
175
+
176
+ ### Curation Rationale
177
+
178
+ From [JDocQA's paper](https://arxiv.org/abs/2403.19454):
179
+
180
+ > To address the demand for a large-scale and fully annotated Japanese document question answering dataset, we introduce a JDocQA dataset by collecting Japanese documents in PDF styles from open-access sources including multiple formats of documents: slides, reports, websites and pamphlets and manually annotating question-answer pairs on them.
181
+
182
+ ### Source Data
183
+
184
+ From [JDocQA's paper](https://arxiv.org/abs/2403.19454):
185
+
186
+ > We gather public documents, such as, municipality pamphlets and websites, that are created by Japanese governmental agencies or local governments.
187
+
188
+ #### Initial Data Collection and Normalization
189
+
190
+ From [JDocQA's paper](https://arxiv.org/abs/2403.19454):
191
+
192
+ > We manually collected PDF documents from open-access resources such as Japanese National Diet Library (NDL)’s digital collection, web archive projects (WARP) and websites of Japanese government ministries. We manually gathered documents such as reports, pamphlets or websites that are published by public or quasi-public sectors, such as local governments or public universities through WARP. We also gather Japanese ministry documents such as slides and reports from their websites following the government agencies’ policies. Those documents cover a wide range of topics, for instance, economic policies, education policies, labor issues, health and hygiene, agriculture, forestry, fisheries, culture and arts, history, related to governmental policy or policy guidelines, as well as the everyday affairs of local governments. These documents also include visual elements such as figures, tables, charts, pictures, or mandala charts, complex figures with a combination of texts and objects typically seen in the Japanese public administrative sector’s official document. We classify these documents into four categories, namely, pamphlet, slide, report, and website considering the form of the documents.
193
+
194
+ > We extracted texts from PDF documents with PyPDF2. We also notice that some PDF documents are probably created from paper scans, and we cannot extract embedded texts from such documents. Therefore, we extracted texts from the document page images by OCR (Optical Character Recognition) as an alternative source. After the text extraction or OCR, we removed mistakenly recognized symbols and emojis, or duplicated characters from texts when the same character continuously and repeatedly appeared more than five times.
195
+
196
+ #### Who are the source language producers?
197
+
198
+ From [JDocQA's paper](https://arxiv.org/abs/2403.19454):
199
+
200
+ > JDocQA dataset comprises 5,504 files and 11,600 question-and-answer pairs in Japanese.
201
+
202
+ ### Annotations
203
+
204
+ #### Annotation process
205
+
206
+ From [JDocQA's paper](https://arxiv.org/abs/2403.19454):
207
+
208
+ > As documents include rich textual and visual elements (e.g., graphs, charts, maps, illustrations, and a mix of vertical and horizontal written text), we made question answer pairs that are related to both textual and visual information. We ask annotators to write up two to four question-answer annotations in each document. We also ask not to use any AI-tools such as OpenAI ChatGPT during the annotation process. Each question is accompanied with the supporting facts as marked in red in Figure 1 and Figure 3. We classify a subset of questions that have multiple supporting facts in multiple pages as multi-page questions. Multi-page questions are considerably difficult from their single-page counterparts. For unanswerable questions, we ask annotators to write questions that lack supporting facts in the documents, making them impossible to answer based on the given documents.
209
+
210
+ > We prepared three types of images for visual inputs for multimodal models. The first type of images are those of the whole page of the documents including the annotated question answering pairs. The second type of images are those cropped by bounding boxes on which annotators based their answers such as tables or figures of the pages. When multiple bounding boxes are annotated to a single question-answer pair, multiple cropped images are combined together into a single image here. The third type of images are blank (white) images that are used for ablation studies.
211
+
212
+ #### Who are the annotators?
213
+
214
+ From [JDocQA's paper](https://arxiv.org/abs/2403.19454):
215
+
216
+ > We ask 43 annotators in total for the question-answering pairs annotation on documents.
217
+
218
+ ### Personal and Sensitive Information
219
+
220
+ [More Information Needed]
221
+
222
+ <!-- State whether the dataset uses identity categories and, if so, how the information is used. Describe where this information comes from (i.e. self-reporting, collecting from profiles, inferring, etc.). See [Larson 2017](https://www.aclweb.org/anthology/W17-1601.pdf) for using identity categories as a variables, particularly gender. State whether the data is linked to individuals and whether those individuals can be identified in the dataset, either directly or indirectly (i.e., in combination with other data).
223
+
224
+ State whether the dataset contains other data that might be considered sensitive (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history).
225
+
226
+ If efforts were made to anonymize the data, describe the anonymization process. -->
227
+
228
+ ## Considerations for Using the Data
229
+
230
+ ### Social Impact of Dataset
231
+
232
+ From [JDocQA's paper](https://arxiv.org/abs/2403.19454):
233
+
234
+ > We assume our datasets are useful for both research and development of generative language models and their applications for Japanese document question answering.
235
+
236
+ ### Discussion of Biases
237
+
238
+ From [JDocQA's paper](https://arxiv.org/abs/2403.19454):
239
+
240
+ > We carefully avoid private documents and choose considerably public documents published by public or quasi-public sectors for the publicity of our dataset usage. All of the documents and webpages are publicly available online and we follow our institutional rules to gather them. We follow our institutional rules and also consult external advisors for data collection processes.
241
+
242
+ ### Other Known Limitations
243
+
244
+ From [JDocQA's paper](https://arxiv.org/abs/2403.19454):
245
+
246
+ > We also consider our dataset with unanswerable questions can contribute to harnessing the hallucination problem of large language models. However, this doesn’t mean that the fintuned models with unanswerable questions do not perform hallucinations at all.
247
+
248
+ ## Additional Information
249
+
250
+ ### Dataset Curators
251
+
252
+ [More Information Needed]
253
+
254
+ <!-- List the people involved in collecting the dataset and their affiliation(s). If funding information is known, include it here. -->
255
+
256
+ ### Licensing Information
257
+
258
+ From [JDocQA's README.md](https://github.com/mizuumi/JDocQA/blob/main/dataset/README.md):
259
+
260
+ > JDocQA dataset annotations are distributed under CC BY-SA 4.0.
261
+
262
+ ### Citation Information
263
+
264
+ ```bibtex
265
+ @inproceedings{JDocQA_2024,
266
+ title = "JDocQA: Japanese Document Question Answering Dataset for Generative Language Models",
267
+ author = "Onami, Eri and
268
+ Kurita, Shuhei and
269
+ Miyanishi, Taiki and
270
+ Watanabe, Taro",
271
+ booktitle = "The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation",
272
+ month = may,
273
+ year = "2024",
274
+ address = "Trino, Italy",
275
+ abstract = "Document question answering is a task of question answering on given documents such as reports, slides, pamphlets, and websites, and it is a truly demanding task as paper and electronic forms of documents are so common in our society. This is known as a quite challenging task because it requires not only text understanding but also understanding of figures and tables, and hence visual question answering (VQA) methods are often examined in addition to textual approaches. We introduce Japanese Document Question Answering (JDocQA), a large-scale document-based QA dataset, essentially requiring both visual and textual information to answer questions, which comprises 5,504 documents in PDF format and annotated 11,600 question-and-answer instances in Japanese. Each QA instance includes references to the document pages and bounding boxes for the answer clues. We incorporate multiple categories of questions and unanswerable questions from the document for realistic question-answering applications. We empirically evaluate the effectiveness of our dataset with text-based large language models (LLMs) and multimodal models. Incorporating unanswerable questions in finetuning may contribute to harnessing the so-called hallucination generation.",
276
+ }
277
+ ```
278
+
279
+ ### Contributions
280
+
281
+ Thanks to [@mizuumi](https://github.com/mizuumi) for creating this dataset.
poetry.lock ADDED
The diff for this file is too large to render. See raw diff
 
pyproject.toml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.poetry]
2
+ name = "huggingface-datasets-jdocqa"
3
+ version = "0.1.0"
4
+ description = ""
5
+ authors = ["Shunsuke KITADA <shunsuke.kitada.0831@gmail.com>"]
6
+ readme = "README.md"
7
+ package-mode = false
8
+
9
+ [tool.poetry.dependencies]
10
+ python = "^3.9"
11
+ datasets = { extras = ["vision"], version = ">=1.0.0" }
12
+
13
+ [tool.poetry.group.dev.dependencies]
14
+ ruff = ">=0.1.5"
15
+ mypy = ">=1.0.0"
16
+ pytest = ">=6.0.0"
17
+
18
+ [tool.mypy]
19
+ python_version = "3.9"
20
+ ignore_missing_imports = true
21
+
22
+ [build-system]
23
+ requires = ["poetry-core"]
24
+ build-backend = "poetry.core.masonry.api"
25
+
tests/JDocQA_test.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import datasets as ds
4
+ import pytest
5
+
6
+
7
+ @pytest.fixture
8
+ def dataset_name() -> str:
9
+ return "JDocQA"
10
+
11
+
12
+ @pytest.fixture
13
+ def dataset_path(dataset_name: str) -> str:
14
+ return f"{dataset_name}.py"
15
+
16
+
17
+ @pytest.mark.skipif(
18
+ condition=bool(os.environ.get("CI", False)),
19
+ reason=(
20
+ "Because this loading script downloads a large dataset, "
21
+ "we will skip running it on CI."
22
+ ),
23
+ )
24
+ def test_load_dataset(
25
+ dataset_path: str,
26
+ expected_num_train: int = 9290,
27
+ expected_num_validation: int = 1134,
28
+ expected_num_test: int = 1176,
29
+ ):
30
+ dataset = ds.load_dataset(path=dataset_path, trust_remote_code=True)
31
+ assert isinstance(dataset, ds.DatasetDict)
32
+
33
+ assert dataset["train"].num_rows == expected_num_train
34
+ assert dataset["validation"].num_rows == expected_num_validation
35
+ assert dataset["test"].num_rows == expected_num_test
tests/__init__.py ADDED
File without changes