File size: 4,644 Bytes
2a24aa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Dataset Card for JGLUE

[![CI](https://github.com/shunk031/huggingface-datasets_JGLUE/actions/workflows/ci.yaml/badge.svg)](https://github.com/shunk031/huggingface-datasets_JGLUE/actions/workflows/ci.yaml)

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://github.com/yahoojapan/JGLUE
- **Repository:** https://github.com/shunk031/huggingface-datasets_JGLUE

### Dataset Summary

> JGLUE, Japanese General Language Understanding Evaluation, is built to measure the general NLU ability in Japanese. JGLUE has been constructed from scratch without translation. We hope that JGLUE will facilitate NLU research in Japanese.

> JGLUE has been constructed by a joint research project of Yahoo Japan Corporation and Kawahara Lab at Waseda University.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

[More Information Needed]

## Dataset Structure

### Data Instances

```python
from datasets import load_dataset

dataset = load_dataset("shunk031/JGLUE", name="JNLI")

print(dataset)

```

### Data Fields

[More Information Needed]

### Data Splits

[More Information Needed]

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

> This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

### Citation Information

```bibtex
@inproceedings{kurihara-etal-2022-jglue,
    title = "{JGLUE}: {J}apanese General Language Understanding Evaluation",
    author = "Kurihara, Kentaro  and
      Kawahara, Daisuke  and
      Shibata, Tomohide",
    booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
    month = jun,
    year = "2022",
    address = "Marseille, France",
    publisher = "European Language Resources Association",
    url = "https://aclanthology.org/2022.lrec-1.317",
    pages = "2957--2966",
    abstract = "To develop high-performance natural language understanding (NLU) models, it is necessary to have a benchmark to evaluate and analyze NLU ability from various perspectives. While the English NLU benchmark, GLUE, has been the forerunner, benchmarks are now being released for languages other than English, such as CLUE for Chinese and FLUE for French; but there is no such benchmark for Japanese. We build a Japanese NLU benchmark, JGLUE, from scratch without translation to measure the general NLU ability in Japanese. We hope that JGLUE will facilitate NLU research in Japanese.",
}
```

```bibtex
@InProceedings{Kurihara_nlp2022,
  author = 	"栗原健太郎 and 河原大輔 and 柴田知秀",
  title = 	"JGLUE: 日本語言語理解ベンチマーク",
  booktitle = 	"言語処理学会第 28 回年次大会",
  year =	"2022",
  url = "https://www.anlp.jp/proceedings/annual_meeting/2022/pdf_dir/E8-4.pdf"
  note= "in Japanese"
}
```

### Contributions

Thanks to [RONDHUIT Co., Ltd.](https://www.rondhuit.com/) for creating this dataset.