shunk031 commited on
Commit
4ba0357
·
verified ·
1 Parent(s): 2a24aa3
Files changed (2) hide show
  1. JGLUE.py +210 -190
  2. tests/JGLUE_test.py +2 -1
JGLUE.py CHANGED
@@ -1,8 +1,7 @@
1
  import json
2
  import random
3
  import string
4
- from collections import defaultdict
5
- from typing import Dict, List, Optional, Union
6
 
7
  import datasets as ds
8
  import pandas as pd
@@ -54,8 +53,12 @@ _DESCRIPTION_CONFIGS = {
54
  _URLS = {
55
  "MARC-ja": {
56
  "data": "https://s3.amazonaws.com/amazon-reviews-pds/tsv/amazon_reviews_multilingual_JP_v1_00.tsv.gz",
57
- "filter_review_id_list/valid.txt": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/preprocess/marc-ja/data/filter_review_id_list/valid.txt",
58
- "label_conv_review_id_list/valid.txt": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/preprocess/marc-ja/data/label_conv_review_id_list/valid.txt",
 
 
 
 
59
  },
60
  "JSTS": {
61
  "train": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsts-v1.1/train-v1.1.json",
@@ -141,7 +144,15 @@ def features_jcommonsenseqa() -> ds.Features:
141
 
142
 
143
  def features_marc_ja() -> ds.Features:
144
- features = ds.Features()
 
 
 
 
 
 
 
 
145
  return features
146
 
147
 
@@ -151,16 +162,14 @@ class MarcJaConfig(ds.BuilderConfig):
151
  name: str = "MARC-ja",
152
  is_han_to_zen: bool = False,
153
  max_instance_num: Optional[int] = None,
154
- max_char_length: Optional[int] = None,
155
- is_pos_neg: bool = False,
156
  train_ratio: float = 0.94,
157
  val_ratio: float = 0.03,
158
  test_ratio: float = 0.03,
159
  output_testset: bool = False,
160
- filter_review_id_list_valid: Optional[str] = None,
161
- filter_review_id_list_test: Optional[str] = None,
162
- label_conv_review_id_list_valid: Optional[str] = None,
163
- label_conv_review_id_list_test: Optional[str] = None,
164
  version: Optional[Union[ds.utils.Version, str]] = ds.utils.Version("0.0.0"),
165
  data_dir: Optional[str] = None,
166
  data_files: Optional[ds.data_files.DataFilesDict] = None,
@@ -184,20 +193,143 @@ class MarcJaConfig(ds.BuilderConfig):
184
  self.max_char_length = max_char_length
185
  self.is_pos_neg = is_pos_neg
186
  self.output_testset = output_testset
 
187
  self.filter_review_id_list_valid = filter_review_id_list_valid
188
- self.filter_review_id_list_test = filter_review_id_list_test
189
  self.label_conv_review_id_list_valid = label_conv_review_id_list_valid
190
- self.label_conv_review_id_list_test = label_conv_review_id_list_test
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
191
 
192
 
193
  def preprocess_for_marc_ja(
194
  config: MarcJaConfig,
195
  data_file_path: str,
196
- filter_review_id_list_path: str,
197
- label_conv_review_id_list_path: str,
198
- ) -> Dict[str, str]:
199
  import mojimoji
200
  from bs4 import BeautifulSoup
 
201
 
202
  df = pd.read_csv(data_file_path, delimiter="\t")
203
  df = df[["review_body", "star_rating", "review_id"]]
@@ -205,39 +337,28 @@ def preprocess_for_marc_ja(
205
  # rename columns
206
  df = df.rename(columns={"review_body": "text", "star_rating": "rating"})
207
 
208
- def get_label(rating: int, is_pos_neg: bool = False) -> Optional[str]:
209
- if rating >= 4:
210
- return "positive"
211
- elif rating <= 2:
212
- return "negative"
213
- else:
214
- if is_pos_neg:
215
- return None
216
- else:
217
- return "neutral"
218
-
219
  # convert the rating to label
 
220
  df = df.assign(
221
- label=df["rating"].apply(lambda rating: get_label(rating, config.is_pos_neg))
 
 
222
  )
223
 
224
  # remove rows where the label is None
225
- df = df[df["label"].isnull()]
226
 
227
  # remove html tags from the text
 
228
  df = df.assign(
229
- text=df["text"].apply(
230
  lambda text: BeautifulSoup(text, "html.parser").get_text()
231
  )
232
  )
233
 
234
- def is_filtered_by_ascii_rate(text: str, threshold: float = 0.9) -> bool:
235
- ascii_letters = set(string.printable)
236
- rate = sum(c in ascii_letters for c in text) / len(text)
237
- return rate >= threshold
238
-
239
  # filter by ascii rate
240
- df = df[~df["text"].apply(is_filtered_by_ascii_rate)]
 
241
 
242
  if config.max_char_length is not None:
243
  df = df[df["text"].str.len() <= config.max_char_length]
@@ -249,140 +370,18 @@ def preprocess_for_marc_ja(
249
  df = df.rename(columns={"text": "sentence"})
250
 
251
  # shuffle dataset
252
- instances = df.to_dict(orient="records")
253
- random.seed(1)
254
- random.shuffle(instances)
255
 
256
- def get_filter_review_id_list(
257
- filter_review_id_list_valid: Optional[str] = None,
258
- filter_review_id_list_test: Optional[str] = None,
259
- ) -> Dict[str, List[str]]:
260
- filter_review_id_list = defaultdict(list)
261
-
262
- if filter_review_id_list_valid is not None:
263
- with open(filter_review_id_list_valid, "r") as rf:
264
- filter_review_id_list["valid"] = [line.rstrip() for line in rf]
265
-
266
- if filter_review_id_list_test is not None:
267
- with open(filter_review_id_list_test, "r") as rf:
268
- filter_review_id_list["test"] = [line.rstrip() for line in rf]
269
-
270
- return filter_review_id_list
271
-
272
- def get_label_conv_review_id_list(
273
- label_conv_review_id_list_valid: Optional[str] = None,
274
- label_conv_review_id_list_test: Optional[str] = None,
275
- ) -> Dict[str, str]:
276
- label_conv_review_id_list = defaultdict(list)
277
-
278
- if label_conv_review_id_list_valid is not None:
279
- breakpoint()
280
- with open(label_conv_review_id_list_valid, "r") as f:
281
- label_conv_review_id_list["valid"] = {
282
- row[0]: row[1] for row in csv.reader(f)
283
- }
284
-
285
- if label_conv_review_id_list_test is not None:
286
- breakpoint()
287
- with open(label_conv_review_id_list_test, "r") as f:
288
- label_conv_review_id_list["test"] = {
289
- row[0]: row[1] for row in csv.reader(f)
290
- }
291
-
292
- return label_conv_review_id_list
293
-
294
- def output_data(
295
- instances: List[Dict[str, str]],
296
- train_ratio: float,
297
- val_ratio: float,
298
- test_ratio: float,
299
- output_testset: bool = False,
300
- ) -> Dict[str, str]:
301
- instance_num = len(instances)
302
-
303
- split_instances = {}
304
- length1 = int(instance_num * train_ratio)
305
- split_instances["train"] = instances[:length1]
306
-
307
- length2 = int(instance_num * (train_ratio + val_ratio))
308
- split_instances["valid"] = instances[length1:length2]
309
- split_instances["test"] = instances[length2:]
310
-
311
- filter_review_id_list = get_filter_review_id_list(
312
- filter_review_id_list_valid=config.filter_review_id_list_valid,
313
- filter_review_id_list_test=config.filter_review_id_list_test,
314
- )
315
- label_conv_review_id_list = get_label_conv_review_id_list(
316
- label_conv_review_id_list_valid=config.label_conv_review_id_list_valid,
317
- label_conv_review_id_list_test=config.label_conv_review_id_list_test,
318
- )
319
-
320
- for eval_type in ("train", "valid", "test"):
321
- if not output_testset and eval_type == "test":
322
- continue
323
-
324
- for instance in split_instances[eval_type]:
325
- # filter
326
- if len(filter_review_id_list) != 0:
327
- filter_flag = False
328
- for filter_eval_type in ("valid", "test"):
329
- if (
330
- eval_type == filter_eval_type
331
- and instance["review_id"]
332
- in filter_review_id_list[filter_eval_type]
333
- ):
334
- filter_flag = True
335
- if eval_type != filter_eval_type:
336
- if filter_eval_type in filter_review_id_list:
337
- assert (
338
- instance["review_id"]
339
- not in filter_review_id_list[filter_eval_type]
340
- )
341
-
342
- if filter_flag is True:
343
- continue
344
-
345
- # convert labels
346
- if len(label_conv_review_id_list) != 0:
347
- for conv_eval_type in ("valid", "test"):
348
- if (
349
- eval_type == conv_eval_type
350
- and instance["review_id"]
351
- in label_conv_review_id_list[conv_eval_type]
352
- ):
353
- assert (
354
- instance["label"]
355
- != label_conv_review_id_list[conv_eval_type][
356
- instance["review_id"]
357
- ]
358
- )
359
- # update
360
- instance["label"] = label_conv_review_id_list[
361
- conv_eval_type
362
- ][instance["review_id"]]
363
-
364
- if eval_type != conv_eval_type:
365
- if conv_eval_type in label_conv_review_id_list:
366
- assert (
367
- instance["review_id"]
368
- not in label_conv_review_id_list[conv_eval_type]
369
- )
370
-
371
- if eval_type == "test":
372
- del instance["label"]
373
-
374
- breakpoint()
375
-
376
- breakpoint()
377
-
378
- file_paths = output_data(
379
- df,
380
  train_ratio=config.train_ratio,
381
  val_ratio=config.val_ratio,
382
  test_ratio=config.test_ratio,
383
  output_testset=config.output_testset,
 
 
384
  )
385
- return file_paths
386
 
387
 
388
  class JGLUE(ds.GeneratorBasedBuilder):
@@ -441,34 +440,55 @@ class JGLUE(ds.GeneratorBasedBuilder):
441
  file_paths = dl_manager.download_and_extract(_URLS[self.config.name])
442
 
443
  if self.config.name == "MARC-ja":
444
- file_paths = preprocess_for_marc_ja(
 
 
 
445
  config=self.config,
446
  data_file_path=file_paths["data"],
447
- filter_review_id_list_path=file_paths[
448
- "filter_review_id_list/valid.txt"
449
- ],
450
- label_conv_review_id_list_path=file_paths[
451
- "label_conv_review_id_list/valid.txt"
452
- ],
453
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
454
 
455
- return [
456
- ds.SplitGenerator(
457
- name=ds.Split.TRAIN,
458
- gen_kwargs={
459
- "file_path": file_paths["train"],
460
- },
461
- ),
462
- ds.SplitGenerator(
463
- name=ds.Split.VALIDATION,
464
- gen_kwargs={
465
- "file_path": file_paths["valid"],
466
- },
467
- ),
468
- ]
469
 
470
- def _generate_examples(self, file_path: str):
471
- with open(file_path, "r") as rf:
472
- for i, line in enumerate(rf):
473
- json_dict = json.loads(line)
474
- yield i, json_dict
 
1
  import json
2
  import random
3
  import string
4
+ from typing import Dict, List, Optional, TypedDict, Union
 
5
 
6
  import datasets as ds
7
  import pandas as pd
 
53
  _URLS = {
54
  "MARC-ja": {
55
  "data": "https://s3.amazonaws.com/amazon-reviews-pds/tsv/amazon_reviews_multilingual_JP_v1_00.tsv.gz",
56
+ "filter_review_id_list": {
57
+ "valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/preprocess/marc-ja/data/filter_review_id_list/valid.txt"
58
+ },
59
+ "label_conv_review_id_list": {
60
+ "valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/preprocess/marc-ja/data/label_conv_review_id_list/valid.txt"
61
+ },
62
  },
63
  "JSTS": {
64
  "train": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsts-v1.1/train-v1.1.json",
 
144
 
145
 
146
  def features_marc_ja() -> ds.Features:
147
+ features = ds.Features(
148
+ {
149
+ "sentence": ds.Value("string"),
150
+ "label": ds.ClassLabel(
151
+ num_classes=3, names=["positive", "negative", "neutral"]
152
+ ),
153
+ "review_id": ds.Value("string"),
154
+ }
155
+ )
156
  return features
157
 
158
 
 
162
  name: str = "MARC-ja",
163
  is_han_to_zen: bool = False,
164
  max_instance_num: Optional[int] = None,
165
+ max_char_length: int = 500,
166
+ is_pos_neg: bool = True,
167
  train_ratio: float = 0.94,
168
  val_ratio: float = 0.03,
169
  test_ratio: float = 0.03,
170
  output_testset: bool = False,
171
+ filter_review_id_list_valid: bool = True,
172
+ label_conv_review_id_list_valid: bool = True,
 
 
173
  version: Optional[Union[ds.utils.Version, str]] = ds.utils.Version("0.0.0"),
174
  data_dir: Optional[str] = None,
175
  data_files: Optional[ds.data_files.DataFilesDict] = None,
 
193
  self.max_char_length = max_char_length
194
  self.is_pos_neg = is_pos_neg
195
  self.output_testset = output_testset
196
+
197
  self.filter_review_id_list_valid = filter_review_id_list_valid
 
198
  self.label_conv_review_id_list_valid = label_conv_review_id_list_valid
199
+
200
+
201
+ def get_label(rating: int, is_pos_neg: bool = False) -> Optional[str]:
202
+ if rating >= 4:
203
+ return "positive"
204
+ elif rating <= 2:
205
+ return "negative"
206
+ else:
207
+ if is_pos_neg:
208
+ return None
209
+ else:
210
+ return "neutral"
211
+
212
+
213
+ def is_filtered_by_ascii_rate(text: str, threshold: float = 0.9) -> bool:
214
+ ascii_letters = set(string.printable)
215
+ rate = sum(c in ascii_letters for c in text) / len(text)
216
+ return rate >= threshold
217
+
218
+
219
+ def shuffle_dataframe(df: pd.DataFrame) -> pd.DataFrame:
220
+ instances = df.to_dict(orient="records")
221
+ random.seed(1)
222
+ random.shuffle(instances)
223
+ return pd.DataFrame(instances)
224
+
225
+
226
+ def get_filter_review_id_list(
227
+ filter_review_id_list_paths: Dict[str, str],
228
+ ) -> Dict[str, List[str]]:
229
+ filter_review_id_list_valid = filter_review_id_list_paths.get("valid")
230
+ filter_review_id_list_test = filter_review_id_list_paths.get("test")
231
+
232
+ filter_review_id_list = {}
233
+
234
+ if filter_review_id_list_valid is not None:
235
+ with open(filter_review_id_list_valid, "r") as rf:
236
+ filter_review_id_list["valid"] = [line.rstrip() for line in rf]
237
+
238
+ if filter_review_id_list_test is not None:
239
+ with open(filter_review_id_list_test, "r") as rf:
240
+ filter_review_id_list["test"] = [line.rstrip() for line in rf]
241
+
242
+ return filter_review_id_list
243
+
244
+
245
+ def get_label_conv_review_id_list(
246
+ label_conv_review_id_list_paths: Dict[str, str],
247
+ ) -> Dict[str, Dict[str, str]]:
248
+ import csv
249
+
250
+ label_conv_review_id_list_valid = label_conv_review_id_list_paths.get("valid")
251
+ label_conv_review_id_list_test = label_conv_review_id_list_paths.get("test")
252
+
253
+ label_conv_review_id_list: Dict[str, Dict[str, str]] = {}
254
+
255
+ if label_conv_review_id_list_valid is not None:
256
+ with open(label_conv_review_id_list_valid, "r") as rf:
257
+ label_conv_review_id_list["valid"] = {
258
+ row[0]: row[1] for row in csv.reader(rf)
259
+ }
260
+
261
+ if label_conv_review_id_list_test is not None:
262
+ with open(label_conv_review_id_list_test, "r") as rf:
263
+ label_conv_review_id_list["test"] = {
264
+ row[0]: row[1] for row in csv.reader(rf)
265
+ }
266
+
267
+ return label_conv_review_id_list
268
+
269
+
270
+ def output_data(
271
+ df: pd.DataFrame,
272
+ train_ratio: float,
273
+ val_ratio: float,
274
+ test_ratio: float,
275
+ output_testset: bool,
276
+ filter_review_id_list_paths: Dict[str, str],
277
+ label_conv_review_id_list_paths: Dict[str, str],
278
+ ) -> Dict[str, pd.DataFrame]:
279
+ instance_num = len(df)
280
+ split_dfs: Dict[str, pd.DataFrame] = {}
281
+ length1 = int(instance_num * train_ratio)
282
+ split_dfs["train"] = df.iloc[:length1]
283
+
284
+ length2 = int(instance_num * (train_ratio + val_ratio))
285
+ split_dfs["valid"] = df.iloc[length1:length2]
286
+ split_dfs["test"] = df.iloc[length2:]
287
+
288
+ filter_review_id_list = get_filter_review_id_list(
289
+ filter_review_id_list_paths=filter_review_id_list_paths,
290
+ )
291
+ label_conv_review_id_list = get_label_conv_review_id_list(
292
+ label_conv_review_id_list_paths=label_conv_review_id_list_paths,
293
+ )
294
+
295
+ for eval_type in ("valid", "test"):
296
+ if filter_review_id_list.get(eval_type):
297
+ df = split_dfs[eval_type]
298
+ df = df[~df["review_id"].isin(filter_review_id_list[eval_type])]
299
+ split_dfs[eval_type] = df
300
+
301
+ for eval_type in ("valid", "test"):
302
+ if label_conv_review_id_list.get(eval_type):
303
+ df = split_dfs[eval_type]
304
+ df = df.assign(
305
+ converted_label=df["review_id"].map(label_conv_review_id_list["valid"])
306
+ )
307
+ df = df.assign(
308
+ label=df[["label", "converted_label"]].apply(
309
+ lambda xs: xs["label"]
310
+ if pd.isnull(xs["converted_label"])
311
+ else xs["converted_label"],
312
+ axis=1,
313
+ )
314
+ )
315
+ df = df.drop(columns=["converted_label"])
316
+ split_dfs[eval_type] = df
317
+
318
+ return {
319
+ "train": split_dfs["train"],
320
+ "valid": split_dfs["valid"],
321
+ }
322
 
323
 
324
  def preprocess_for_marc_ja(
325
  config: MarcJaConfig,
326
  data_file_path: str,
327
+ filter_review_id_list_paths: Dict[str, str],
328
+ label_conv_review_id_list_paths: Dict[str, str],
329
+ ) -> Dict[str, pd.DataFrame]:
330
  import mojimoji
331
  from bs4 import BeautifulSoup
332
+ from tqdm import tqdm
333
 
334
  df = pd.read_csv(data_file_path, delimiter="\t")
335
  df = df[["review_body", "star_rating", "review_id"]]
 
337
  # rename columns
338
  df = df.rename(columns={"review_body": "text", "star_rating": "rating"})
339
 
 
 
 
 
 
 
 
 
 
 
 
340
  # convert the rating to label
341
+ tqdm.pandas(dynamic_ncols=True, desc="Convert the rating to the label")
342
  df = df.assign(
343
+ label=df["rating"].progress_apply(
344
+ lambda rating: get_label(rating, config.is_pos_neg)
345
+ )
346
  )
347
 
348
  # remove rows where the label is None
349
+ df = df[~df["label"].isnull()]
350
 
351
  # remove html tags from the text
352
+ tqdm.pandas(dynamic_ncols=True, desc="Remove html tags from the text")
353
  df = df.assign(
354
+ text=df["text"].progress_apply(
355
  lambda text: BeautifulSoup(text, "html.parser").get_text()
356
  )
357
  )
358
 
 
 
 
 
 
359
  # filter by ascii rate
360
+ tqdm.pandas(dynamic_ncols=True, desc="Filter by ascii rate")
361
+ df = df[~df["text"].progress_apply(is_filtered_by_ascii_rate)]
362
 
363
  if config.max_char_length is not None:
364
  df = df[df["text"].str.len() <= config.max_char_length]
 
370
  df = df.rename(columns={"text": "sentence"})
371
 
372
  # shuffle dataset
373
+ df = shuffle_dataframe(df)
 
 
374
 
375
+ split_dfs = output_data(
376
+ df=df,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
377
  train_ratio=config.train_ratio,
378
  val_ratio=config.val_ratio,
379
  test_ratio=config.test_ratio,
380
  output_testset=config.output_testset,
381
+ filter_review_id_list_paths=filter_review_id_list_paths,
382
+ label_conv_review_id_list_paths=label_conv_review_id_list_paths,
383
  )
384
+ return split_dfs
385
 
386
 
387
  class JGLUE(ds.GeneratorBasedBuilder):
 
440
  file_paths = dl_manager.download_and_extract(_URLS[self.config.name])
441
 
442
  if self.config.name == "MARC-ja":
443
+ filter_review_id_list = file_paths["filter_review_id_list"]
444
+ label_conv_review_id_list = file_paths["label_conv_review_id_list"]
445
+
446
+ split_dfs = preprocess_for_marc_ja(
447
  config=self.config,
448
  data_file_path=file_paths["data"],
449
+ filter_review_id_list_paths=filter_review_id_list,
450
+ label_conv_review_id_list_paths=label_conv_review_id_list,
 
 
 
 
451
  )
452
+ return [
453
+ ds.SplitGenerator(
454
+ name=ds.Split.TRAIN,
455
+ gen_kwargs={"split_df": split_dfs["train"]},
456
+ ),
457
+ ds.SplitGenerator(
458
+ name=ds.Split.VALIDATION,
459
+ gen_kwargs={"split_df": split_dfs["valid"]},
460
+ ),
461
+ ]
462
+ else:
463
+ return [
464
+ ds.SplitGenerator(
465
+ name=ds.Split.TRAIN,
466
+ gen_kwargs={"file_path": file_paths["train"]},
467
+ ),
468
+ ds.SplitGenerator(
469
+ name=ds.Split.VALIDATION,
470
+ gen_kwargs={"file_path": file_paths["valid"]},
471
+ ),
472
+ ]
473
+
474
+ def _generate_examples(
475
+ self,
476
+ file_path: Optional[str] = None,
477
+ split_df: Optional[pd.DataFrame] = None,
478
+ ):
479
+ if self.config.name == "MARC-ja":
480
+ if split_df is None:
481
+ raise ValueError(f"Invalid preprocessing for {self.config.name}")
482
 
483
+ instances = split_df.to_dict(orient="records")
484
+ for i, data_dict in enumerate(instances):
485
+ yield i, data_dict
486
+
487
+ else:
488
+ if file_path is None:
489
+ raise ValueError(f"Invalid argument for {self.config.name}")
 
 
 
 
 
 
 
490
 
491
+ with open(file_path, "r") as rf:
492
+ for i, line in enumerate(rf):
493
+ json_dict = json.loads(line)
494
+ yield i, json_dict
 
tests/JGLUE_test.py CHANGED
@@ -61,7 +61,8 @@ def test_load_marc_ja(
61
  name=dataset_name,
62
  is_pos_neg=True,
63
  max_char_length=500,
64
- is_han_to_zen=True,
 
65
  )
66
 
67
  assert dataset["train"].num_rows == expected_num_train
 
61
  name=dataset_name,
62
  is_pos_neg=True,
63
  max_char_length=500,
64
+ filter_review_id_list_valid=True,
65
+ label_conv_review_id_list_valid=True,
66
  )
67
 
68
  assert dataset["train"].num_rows == expected_num_train