shunk031 commited on
Commit
eda3bbb
1 Parent(s): faa2e26

[WIP] update for MARC-ja

Browse files
Files changed (2) hide show
  1. JGLUE.py +276 -0
  2. tests/JGLUE_test.py +18 -0
JGLUE.py CHANGED
@@ -1,6 +1,11 @@
1
  import json
 
 
 
 
2
 
3
  import datasets as ds
 
4
 
5
  _CITATION = """\
6
  @inproceedings{kurihara-etal-2022-jglue,
@@ -39,6 +44,7 @@ This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Intern
39
  """
40
 
41
  _DESCRIPTION_CONFIGS = {
 
42
  "JSTS": "JSTS is a Japanese version of the STS (Semantic Textual Similarity) dataset. STS is a task to estimate the semantic similarity of a sentence pair.",
43
  "JNLI": "JNLI is a Japanese version of the NLI (Natural Language Inference) dataset. NLI is a task to recognize the inference relation that a premise sentence has to a hypothesis sentence.",
44
  "JSQuAD": "JSQuAD is a Japanese version of SQuAD (Rajpurkar+, 2016), one of the datasets of reading comprehension.",
@@ -46,6 +52,11 @@ _DESCRIPTION_CONFIGS = {
46
  }
47
 
48
  _URLS = {
 
 
 
 
 
49
  "JSTS": {
50
  "train": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsts-v1.1/train-v1.1.json",
51
  "valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsts-v1.1/valid-v1.1.json",
@@ -129,9 +140,259 @@ def features_jcommonsenseqa() -> ds.Features:
129
  return features
130
 
131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
  class JGLUE(ds.GeneratorBasedBuilder):
133
  VERSION = ds.Version("1.1.0")
134
  BUILDER_CONFIGS = [
 
 
 
 
 
135
  ds.BuilderConfig(
136
  name="JSTS",
137
  version=VERSION,
@@ -163,6 +424,8 @@ class JGLUE(ds.GeneratorBasedBuilder):
163
  features = features_jsquad()
164
  elif self.config.name == "JCommonsenseQA":
165
  features = features_jcommonsenseqa()
 
 
166
  else:
167
  raise ValueError(f"Invalid config name: {self.config.name}")
168
 
@@ -176,6 +439,19 @@ class JGLUE(ds.GeneratorBasedBuilder):
176
 
177
  def _split_generators(self, dl_manager: ds.DownloadManager):
178
  file_paths = dl_manager.download_and_extract(_URLS[self.config.name])
 
 
 
 
 
 
 
 
 
 
 
 
 
179
  return [
180
  ds.SplitGenerator(
181
  name=ds.Split.TRAIN,
 
1
  import json
2
+ import random
3
+ import string
4
+ from collections import defaultdict
5
+ from typing import Dict, List, Optional, Union
6
 
7
  import datasets as ds
8
+ import pandas as pd
9
 
10
  _CITATION = """\
11
  @inproceedings{kurihara-etal-2022-jglue,
 
44
  """
45
 
46
  _DESCRIPTION_CONFIGS = {
47
+ "MARC-ja": "MARC-ja is a dataset of the text classification task. This dataset is based on the Japanese portion of Multilingual Amazon Reviews Corpus (MARC) (Keung+, 2020).",
48
  "JSTS": "JSTS is a Japanese version of the STS (Semantic Textual Similarity) dataset. STS is a task to estimate the semantic similarity of a sentence pair.",
49
  "JNLI": "JNLI is a Japanese version of the NLI (Natural Language Inference) dataset. NLI is a task to recognize the inference relation that a premise sentence has to a hypothesis sentence.",
50
  "JSQuAD": "JSQuAD is a Japanese version of SQuAD (Rajpurkar+, 2016), one of the datasets of reading comprehension.",
 
52
  }
53
 
54
  _URLS = {
55
+ "MARC-ja": {
56
+ "data": "https://s3.amazonaws.com/amazon-reviews-pds/tsv/amazon_reviews_multilingual_JP_v1_00.tsv.gz",
57
+ "filter_review_id_list/valid.txt": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/preprocess/marc-ja/data/filter_review_id_list/valid.txt",
58
+ "label_conv_review_id_list/valid.txt": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/preprocess/marc-ja/data/label_conv_review_id_list/valid.txt",
59
+ },
60
  "JSTS": {
61
  "train": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsts-v1.1/train-v1.1.json",
62
  "valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsts-v1.1/valid-v1.1.json",
 
140
  return features
141
 
142
 
143
+ def features_marc_ja() -> ds.Features:
144
+ features = ds.Features()
145
+ return features
146
+
147
+
148
+ class MarcJaConfig(ds.BuilderConfig):
149
+ def __init__(
150
+ self,
151
+ name: str = "MARC-ja",
152
+ is_han_to_zen: bool = False,
153
+ max_instance_num: Optional[int] = None,
154
+ max_char_length: Optional[int] = None,
155
+ is_pos_neg: bool = False,
156
+ train_ratio: float = 0.94,
157
+ val_ratio: float = 0.03,
158
+ test_ratio: float = 0.03,
159
+ output_testset: bool = False,
160
+ filter_review_id_list_valid: Optional[str] = None,
161
+ filter_review_id_list_test: Optional[str] = None,
162
+ label_conv_review_id_list_valid: Optional[str] = None,
163
+ label_conv_review_id_list_test: Optional[str] = None,
164
+ version: Optional[Union[ds.utils.Version, str]] = ds.utils.Version("0.0.0"),
165
+ data_dir: Optional[str] = None,
166
+ data_files: Optional[ds.data_files.DataFilesDict] = None,
167
+ description: Optional[str] = None,
168
+ ) -> None:
169
+ super().__init__(
170
+ name=name,
171
+ version=version,
172
+ data_dir=data_dir,
173
+ data_files=data_files,
174
+ description=description,
175
+ )
176
+ assert train_ratio + val_ratio + test_ratio == 1.0
177
+
178
+ self.train_ratio = train_ratio
179
+ self.val_ratio = val_ratio
180
+ self.test_ratio = test_ratio
181
+
182
+ self.is_han_to_zen = is_han_to_zen
183
+ self.max_instance_num = max_instance_num
184
+ self.max_char_length = max_char_length
185
+ self.is_pos_neg = is_pos_neg
186
+ self.output_testset = output_testset
187
+ self.filter_review_id_list_valid = filter_review_id_list_valid
188
+ self.filter_review_id_list_test = filter_review_id_list_test
189
+ self.label_conv_review_id_list_valid = label_conv_review_id_list_valid
190
+ self.label_conv_review_id_list_test = label_conv_review_id_list_test
191
+
192
+
193
+ def preprocess_for_marc_ja(
194
+ config: MarcJaConfig,
195
+ data_file_path: str,
196
+ filter_review_id_list_path: str,
197
+ label_conv_review_id_list_path: str,
198
+ ) -> Dict[str, str]:
199
+ import mojimoji
200
+ from bs4 import BeautifulSoup
201
+
202
+ df = pd.read_csv(data_file_path, delimiter="\t")
203
+ df = df[["review_body", "star_rating", "review_id"]]
204
+
205
+ # rename columns
206
+ df = df.rename(columns={"review_body": "text", "star_rating": "rating"})
207
+
208
+ def get_label(rating: int, is_pos_neg: bool = False) -> Optional[str]:
209
+ if rating >= 4:
210
+ return "positive"
211
+ elif rating <= 2:
212
+ return "negative"
213
+ else:
214
+ if is_pos_neg:
215
+ return None
216
+ else:
217
+ return "neutral"
218
+
219
+ # convert the rating to label
220
+ df = df.assign(
221
+ label=df["rating"].apply(lambda rating: get_label(rating, config.is_pos_neg))
222
+ )
223
+
224
+ # remove rows where the label is None
225
+ df = df[df["label"].isnull()]
226
+
227
+ # remove html tags from the text
228
+ df = df.assign(
229
+ text=df["text"].apply(
230
+ lambda text: BeautifulSoup(text, "html.parser").get_text()
231
+ )
232
+ )
233
+
234
+ def is_filtered_by_ascii_rate(text: str, threshold: float = 0.9) -> bool:
235
+ ascii_letters = set(string.printable)
236
+ rate = sum(c in ascii_letters for c in text) / len(text)
237
+ return rate >= threshold
238
+
239
+ # filter by ascii rate
240
+ df = df[~df["text"].apply(is_filtered_by_ascii_rate)]
241
+
242
+ if config.max_char_length is not None:
243
+ df = df[df["text"].str.len() <= config.max_char_length]
244
+
245
+ if config.is_han_to_zen:
246
+ df = df.assign(text=df["text"].apply(mojimoji.han_to_zen))
247
+
248
+ df = df[["text", "label", "review_id"]]
249
+ df = df.rename(columns={"text": "sentence"})
250
+
251
+ # shuffle dataset
252
+ instances = df.to_dict(orient="records")
253
+ random.seed(1)
254
+ random.shuffle(instances)
255
+
256
+ def get_filter_review_id_list(
257
+ filter_review_id_list_valid: Optional[str] = None,
258
+ filter_review_id_list_test: Optional[str] = None,
259
+ ) -> Dict[str, List[str]]:
260
+ filter_review_id_list = defaultdict(list)
261
+
262
+ if filter_review_id_list_valid is not None:
263
+ with open(filter_review_id_list_valid, "r") as rf:
264
+ filter_review_id_list["valid"] = [line.rstrip() for line in rf]
265
+
266
+ if filter_review_id_list_test is not None:
267
+ with open(filter_review_id_list_test, "r") as rf:
268
+ filter_review_id_list["test"] = [line.rstrip() for line in rf]
269
+
270
+ return filter_review_id_list
271
+
272
+ def get_label_conv_review_id_list(
273
+ label_conv_review_id_list_valid: Optional[str] = None,
274
+ label_conv_review_id_list_test: Optional[str] = None,
275
+ ) -> Dict[str, str]:
276
+ label_conv_review_id_list = defaultdict(list)
277
+
278
+ if label_conv_review_id_list_valid is not None:
279
+ breakpoint()
280
+ with open(label_conv_review_id_list_valid, "r") as f:
281
+ label_conv_review_id_list["valid"] = {
282
+ row[0]: row[1] for row in csv.reader(f)
283
+ }
284
+
285
+ if label_conv_review_id_list_test is not None:
286
+ breakpoint()
287
+ with open(label_conv_review_id_list_test, "r") as f:
288
+ label_conv_review_id_list["test"] = {
289
+ row[0]: row[1] for row in csv.reader(f)
290
+ }
291
+
292
+ return label_conv_review_id_list
293
+
294
+ def output_data(
295
+ instances: List[Dict[str, str]],
296
+ train_ratio: float,
297
+ val_ratio: float,
298
+ test_ratio: float,
299
+ output_testset: bool = False,
300
+ ) -> Dict[str, str]:
301
+ instance_num = len(instances)
302
+
303
+ split_instances = {}
304
+ length1 = int(instance_num * train_ratio)
305
+ split_instances["train"] = instances[:length1]
306
+
307
+ length2 = int(instance_num * (train_ratio + val_ratio))
308
+ split_instances["valid"] = instances[length1:length2]
309
+ split_instances["test"] = instances[length2:]
310
+
311
+ filter_review_id_list = get_filter_review_id_list(
312
+ filter_review_id_list_valid=config.filter_review_id_list_valid,
313
+ filter_review_id_list_test=config.filter_review_id_list_test,
314
+ )
315
+ label_conv_review_id_list = get_label_conv_review_id_list(
316
+ label_conv_review_id_list_valid=config.label_conv_review_id_list_valid,
317
+ label_conv_review_id_list_test=config.label_conv_review_id_list_test,
318
+ )
319
+
320
+ for eval_type in ("train", "valid", "test"):
321
+ if not output_testset and eval_type == "test":
322
+ continue
323
+
324
+ for instance in split_instances[eval_type]:
325
+ # filter
326
+ if len(filter_review_id_list) != 0:
327
+ filter_flag = False
328
+ for filter_eval_type in ("valid", "test"):
329
+ if (
330
+ eval_type == filter_eval_type
331
+ and instance["review_id"]
332
+ in filter_review_id_list[filter_eval_type]
333
+ ):
334
+ filter_flag = True
335
+ if eval_type != filter_eval_type:
336
+ if filter_eval_type in filter_review_id_list:
337
+ assert (
338
+ instance["review_id"]
339
+ not in filter_review_id_list[filter_eval_type]
340
+ )
341
+
342
+ if filter_flag is True:
343
+ continue
344
+
345
+ # convert labels
346
+ if len(label_conv_review_id_list) != 0:
347
+ for conv_eval_type in ("valid", "test"):
348
+ if (
349
+ eval_type == conv_eval_type
350
+ and instance["review_id"]
351
+ in label_conv_review_id_list[conv_eval_type]
352
+ ):
353
+ assert (
354
+ instance["label"]
355
+ != label_conv_review_id_list[conv_eval_type][
356
+ instance["review_id"]
357
+ ]
358
+ )
359
+ # update
360
+ instance["label"] = label_conv_review_id_list[
361
+ conv_eval_type
362
+ ][instance["review_id"]]
363
+
364
+ if eval_type != conv_eval_type:
365
+ if conv_eval_type in label_conv_review_id_list:
366
+ assert (
367
+ instance["review_id"]
368
+ not in label_conv_review_id_list[conv_eval_type]
369
+ )
370
+
371
+ if eval_type == "test":
372
+ del instance["label"]
373
+
374
+ breakpoint()
375
+
376
+ breakpoint()
377
+
378
+ file_paths = output_data(
379
+ df,
380
+ train_ratio=config.train_ratio,
381
+ val_ratio=config.val_ratio,
382
+ test_ratio=config.test_ratio,
383
+ output_testset=config.output_testset,
384
+ )
385
+ return file_paths
386
+
387
+
388
  class JGLUE(ds.GeneratorBasedBuilder):
389
  VERSION = ds.Version("1.1.0")
390
  BUILDER_CONFIGS = [
391
+ MarcJaConfig(
392
+ name="MARC-ja",
393
+ version=VERSION,
394
+ description=_DESCRIPTION_CONFIGS["MARC-ja"],
395
+ ),
396
  ds.BuilderConfig(
397
  name="JSTS",
398
  version=VERSION,
 
424
  features = features_jsquad()
425
  elif self.config.name == "JCommonsenseQA":
426
  features = features_jcommonsenseqa()
427
+ elif self.config.name == "MARC-ja":
428
+ features = features_marc_ja()
429
  else:
430
  raise ValueError(f"Invalid config name: {self.config.name}")
431
 
 
439
 
440
  def _split_generators(self, dl_manager: ds.DownloadManager):
441
  file_paths = dl_manager.download_and_extract(_URLS[self.config.name])
442
+
443
+ if self.config.name == "MARC-ja":
444
+ file_paths = preprocess_for_marc_ja(
445
+ config=self.config,
446
+ data_file_path=file_paths["data"],
447
+ filter_review_id_list_path=file_paths[
448
+ "filter_review_id_list/valid.txt"
449
+ ],
450
+ label_conv_review_id_list_path=file_paths[
451
+ "label_conv_review_id_list/valid.txt"
452
+ ],
453
+ )
454
+
455
  return [
456
  ds.SplitGenerator(
457
  name=ds.Split.TRAIN,
tests/JGLUE_test.py CHANGED
@@ -48,3 +48,21 @@ def test_load_jsquad(
48
 
49
  assert count_num_data("train") == expected_num_train
50
  assert count_num_data("validation") == expected_num_valid
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
  assert count_num_data("train") == expected_num_train
50
  assert count_num_data("validation") == expected_num_valid
51
+
52
+
53
+ def test_load_marc_ja(
54
+ dataset_path: str,
55
+ dataset_name: str = "MARC-ja",
56
+ expected_num_train: int = 187528,
57
+ expected_num_valid: int = 5654,
58
+ ):
59
+ dataset = ds.load_dataset(
60
+ path=dataset_path,
61
+ name=dataset_name,
62
+ is_pos_neg=True,
63
+ max_char_length=500,
64
+ is_han_to_zen=True,
65
+ )
66
+
67
+ assert dataset["train"].num_rows == expected_num_train
68
+ assert dataset["validation"].num_rows == expected_num_valid