File size: 31,722 Bytes
672f30e 1d9dac8 672f30e 1d9dac8 672f30e 1d9dac8 672f30e 1d9dac8 672f30e 1d9dac8 c20d499 1d9dac8 672f30e 1d9dac8 672f30e 1d9dac8 672f30e 1d9dac8 c20d499 1d9dac8 672f30e 1d9dac8 672f30e c20d499 672f30e 1d9dac8 672f30e 1d9dac8 672f30e 1d9dac8 672f30e 1d9dac8 672f30e 1d9dac8 672f30e 1d9dac8 672f30e 1d9dac8 672f30e 1d9dac8 672f30e 1d9dac8 c20d499 1d9dac8 c20d499 672f30e 1d9dac8 672f30e 1d9dac8 672f30e 1d9dac8 c20d499 672f30e 1d9dac8 672f30e 1d9dac8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 |
import abc
import json
import logging
import os
from collections import defaultdict
from dataclasses import asdict, dataclass
from typing import (
Any,
Dict,
Final,
Iterator,
List,
Literal,
Optional,
Sequence,
Tuple,
TypedDict,
Union,
get_args,
)
import datasets as ds
import numpy as np
from datasets.data_files import DataFilesDict
from PIL import Image
from PIL.Image import Image as PilImage
from pycocotools import mask as cocomask
from tqdm.auto import tqdm
logger = logging.getLogger(__name__)
JsonDict = Dict[str, Any]
ImageId = int
AnnotationId = int
LicenseId = int
CategoryId = int
Bbox = Tuple[float, float, float, float]
MscocoSplits = Literal["train", "val", "test"]
KEYPOINT_STATE: Final[List[str]] = ["unknown", "invisible", "visible"]
_CITATION = """
"""
_DESCRIPTION = """
"""
_HOMEPAGE = """
"""
_LICENSE = """
"""
_URLS = {
"2014": {
"images": {
"train": "http://images.cocodataset.org/zips/train2014.zip",
"validation": "http://images.cocodataset.org/zips/val2014.zip",
"test": "http://images.cocodataset.org/zips/test2014.zip",
},
"annotations": {
"train_validation": "http://images.cocodataset.org/annotations/annotations_trainval2014.zip",
"test_image_info": "http://images.cocodataset.org/annotations/image_info_test2014.zip",
},
},
"2015": {
"images": {
"test": "http://images.cocodataset.org/zips/test2015.zip",
},
"annotations": {
"test_image_info": "http://images.cocodataset.org/annotations/image_info_test2015.zip",
},
},
"2017": {
"images": {
"train": "http://images.cocodataset.org/zips/train2017.zip",
"validation": "http://images.cocodataset.org/zips/val2017.zip",
"test": "http://images.cocodataset.org/zips/test2017.zip",
"unlabeled": "http://images.cocodataset.org/zips/unlabeled2017.zip",
},
"annotations": {
"train_validation": "http://images.cocodataset.org/annotations/annotations_trainval2017.zip",
"stuff_train_validation": "http://images.cocodataset.org/annotations/stuff_annotations_trainval2017.zip",
"panoptic_train_validation": "http://images.cocodataset.org/annotations/panoptic_annotations_trainval2017.zip",
"test_image_info": "http://images.cocodataset.org/annotations/image_info_test2017.zip",
"unlabeled": "http://images.cocodataset.org/annotations/image_info_unlabeled2017.zip",
},
},
}
CATEGORIES: Final[List[str]] = [
"person",
"bicycle",
"car",
"motorcycle",
"airplane",
"bus",
"train",
"truck",
"boat",
"traffic light",
"fire hydrant",
"stop sign",
"parking meter",
"bench",
"bird",
"cat",
"dog",
"horse",
"sheep",
"cow",
"elephant",
"bear",
"zebra",
"giraffe",
"backpack",
"umbrella",
"handbag",
"tie",
"suitcase",
"frisbee",
"skis",
"snowboard",
"sports ball",
"kite",
"baseball bat",
"baseball glove",
"skateboard",
"surfboard",
"tennis racket",
"bottle",
"wine glass",
"cup",
"fork",
"knife",
"spoon",
"bowl",
"banana",
"apple",
"sandwich",
"orange",
"broccoli",
"carrot",
"hot dog",
"pizza",
"donut",
"cake",
"chair",
"couch",
"potted plant",
"bed",
"dining table",
"toilet",
"tv",
"laptop",
"mouse",
"remote",
"keyboard",
"cell phone",
"microwave",
"oven",
"toaster",
"sink",
"refrigerator",
"book",
"clock",
"vase",
"scissors",
"teddy bear",
"hair drier",
"toothbrush",
]
SUPER_CATEGORIES: Final[List[str]] = [
"person",
"vehicle",
"outdoor",
"animal",
"accessory",
"sports",
"kitchen",
"food",
"furniture",
"electronic",
"appliance",
"indoor",
]
@dataclass
class AnnotationInfo(object):
description: str
url: str
version: str
year: str
contributor: str
date_created: str
@classmethod
def from_dict(cls, json_dict: JsonDict) -> "AnnotationInfo":
return cls(**json_dict)
@dataclass
class LicenseData(object):
url: str
license_id: LicenseId
name: str
@classmethod
def from_dict(cls, json_dict: JsonDict) -> "LicenseData":
return cls(
license_id=json_dict["id"],
url=json_dict["url"],
name=json_dict["name"],
)
@dataclass
class ImageData(object):
image_id: ImageId
license_id: LicenseId
file_name: str
coco_url: str
height: int
width: int
date_captured: str
flickr_url: str
@classmethod
def from_dict(cls, json_dict: JsonDict) -> "ImageData":
return cls(
image_id=json_dict["id"],
license_id=json_dict["license"],
file_name=json_dict["file_name"],
coco_url=json_dict["coco_url"],
height=json_dict["height"],
width=json_dict["width"],
date_captured=json_dict["date_captured"],
flickr_url=json_dict["flickr_url"],
)
@property
def shape(self) -> Tuple[int, int]:
return (self.height, self.width)
@dataclass
class CategoryData(object):
category_id: int
name: str
supercategory: str
@classmethod
def from_dict(cls, json_dict: JsonDict) -> "CategoryData":
return cls(
category_id=json_dict["id"],
name=json_dict["name"],
supercategory=json_dict["supercategory"],
)
@dataclass
class AnnotationData(object):
annotation_id: AnnotationId
image_id: ImageId
@dataclass
class CaptionsAnnotationData(AnnotationData):
caption: str
@classmethod
def from_dict(cls, json_dict: JsonDict) -> "CaptionsAnnotationData":
return cls(
annotation_id=json_dict["id"],
image_id=json_dict["image_id"],
caption=json_dict["caption"],
)
class UncompressedRLE(TypedDict):
counts: List[int]
size: Tuple[int, int]
class CompressedRLE(TypedDict):
counts: bytes
size: Tuple[int, int]
@dataclass
class InstancesAnnotationData(AnnotationData):
segmentation: Union[np.ndarray, CompressedRLE]
area: float
iscrowd: bool
bbox: Tuple[float, float, float, float]
category_id: int
@classmethod
def compress_rle(
cls,
segmentation: Union[List[List[float]], UncompressedRLE],
iscrowd: bool,
height: int,
width: int,
) -> CompressedRLE:
if iscrowd:
rle = cocomask.frPyObjects(segmentation, h=height, w=width)
else:
rles = cocomask.frPyObjects(segmentation, h=height, w=width)
rle = cocomask.merge(rles)
return rle # type: ignore
@classmethod
def rle_segmentation_to_binary_mask(
cls, segmentation, iscrowd: bool, height: int, width: int
) -> np.ndarray:
rle = cls.compress_rle(
segmentation=segmentation, iscrowd=iscrowd, height=height, width=width
)
return cocomask.decode(rle) # type: ignore
@classmethod
def rle_segmentation_to_mask(
cls,
segmentation: Union[List[List[float]], UncompressedRLE],
iscrowd: bool,
height: int,
width: int,
) -> np.ndarray:
binary_mask = cls.rle_segmentation_to_binary_mask(
segmentation=segmentation, iscrowd=iscrowd, height=height, width=width
)
return binary_mask * 255
@classmethod
def from_dict(
cls,
json_dict: JsonDict,
images: Dict[ImageId, ImageData],
decode_rle: bool,
) -> "InstancesAnnotationData":
segmentation = json_dict["segmentation"]
image_id = json_dict["image_id"]
image_data = images[image_id]
iscrowd = bool(json_dict["iscrowd"])
segmentation_mask = (
cls.rle_segmentation_to_mask(
segmentation=segmentation,
iscrowd=iscrowd,
height=image_data.height,
width=image_data.width,
)
if decode_rle
else cls.compress_rle(
segmentation=segmentation,
iscrowd=iscrowd,
height=image_data.height,
width=image_data.width,
)
)
return cls(
#
# for AnnotationData
#
annotation_id=json_dict["id"],
image_id=image_id,
#
# for InstancesAnnotationData
#
segmentation=segmentation_mask, # type: ignore
area=json_dict["area"],
iscrowd=iscrowd,
bbox=json_dict["bbox"],
category_id=json_dict["category_id"],
)
@dataclass
class PersonKeypoint(object):
x: int
y: int
v: int
state: str
@dataclass
class PersonKeypointsAnnotationData(InstancesAnnotationData):
num_keypoints: int
keypoints: List[PersonKeypoint]
@classmethod
def v_keypoint_to_state(cls, keypoint_v: int) -> str:
return KEYPOINT_STATE[keypoint_v]
@classmethod
def get_person_keypoints(
cls, flatten_keypoints: List[int], num_keypoints: int
) -> List[PersonKeypoint]:
keypoints_x = flatten_keypoints[0::3]
keypoints_y = flatten_keypoints[1::3]
keypoints_v = flatten_keypoints[2::3]
assert len(keypoints_x) == len(keypoints_y) == len(keypoints_v)
keypoints = [
PersonKeypoint(x=x, y=y, v=v, state=cls.v_keypoint_to_state(v))
for x, y, v in zip(keypoints_x, keypoints_y, keypoints_v)
]
assert len([kp for kp in keypoints if kp.state != "unknown"]) == num_keypoints
return keypoints
@classmethod
def from_dict(
cls,
json_dict: JsonDict,
images: Dict[ImageId, ImageData],
decode_rle: bool,
) -> "PersonKeypointsAnnotationData":
segmentation = json_dict["segmentation"]
image_id = json_dict["image_id"]
image_data = images[image_id]
iscrowd = bool(json_dict["iscrowd"])
segmentation_mask = (
cls.rle_segmentation_to_mask(
segmentation=segmentation,
iscrowd=iscrowd,
height=image_data.height,
width=image_data.width,
)
if decode_rle
else cls.compress_rle(
segmentation=segmentation,
iscrowd=iscrowd,
height=image_data.height,
width=image_data.width,
)
)
flatten_keypoints = json_dict["keypoints"]
num_keypoints = json_dict["num_keypoints"]
keypoints = cls.get_person_keypoints(flatten_keypoints, num_keypoints)
return cls(
#
# for AnnotationData
#
annotation_id=json_dict["id"],
image_id=image_id,
#
# for InstancesAnnotationData
#
segmentation=segmentation_mask, # type: ignore
area=json_dict["area"],
iscrowd=iscrowd,
bbox=json_dict["bbox"],
category_id=json_dict["category_id"],
#
# PersonKeypointsAnnotationData
#
num_keypoints=num_keypoints,
keypoints=keypoints,
)
class LicenseDict(TypedDict):
license_id: LicenseId
name: str
url: str
class BaseExample(TypedDict):
image_id: ImageId
image: PilImage
file_name: str
coco_url: str
height: int
width: int
date_captured: str
flickr_url: str
license_id: LicenseId
license: LicenseDict
class CaptionAnnotationDict(TypedDict):
annotation_id: AnnotationId
caption: str
class CaptionExample(BaseExample):
annotations: List[CaptionAnnotationDict]
class CategoryDict(TypedDict):
category_id: CategoryId
name: str
supercategory: str
class InstanceAnnotationDict(TypedDict):
annotation_id: AnnotationId
area: float
bbox: Bbox
image_id: ImageId
category_id: CategoryId
category: CategoryDict
iscrowd: bool
segmentation: np.ndarray
class InstanceExample(BaseExample):
annotations: List[InstanceAnnotationDict]
class KeypointDict(TypedDict):
x: int
y: int
v: int
state: str
class PersonKeypointAnnotationDict(InstanceAnnotationDict):
num_keypoints: int
keypoints: List[KeypointDict]
class PersonKeypointExample(BaseExample):
annotations: List[PersonKeypointAnnotationDict]
class MsCocoProcessor(object, metaclass=abc.ABCMeta):
def load_image(self, image_path: str) -> PilImage:
return Image.open(image_path)
def load_annotation_json(self, ann_file_path: str) -> JsonDict:
logger.info(f"Load annotation json from {ann_file_path}")
with open(ann_file_path, "r") as rf:
ann_json = json.load(rf)
return ann_json
def load_licenses_data(
self, license_dicts: List[JsonDict]
) -> Dict[LicenseId, LicenseData]:
licenses = {}
for license_dict in license_dicts:
license_data = LicenseData.from_dict(license_dict)
licenses[license_data.license_id] = license_data
return licenses
def load_images_data(
self,
image_dicts: List[JsonDict],
tqdm_desc: str = "Load images",
) -> Dict[ImageId, ImageData]:
images = {}
for image_dict in tqdm(image_dicts, desc=tqdm_desc):
image_data = ImageData.from_dict(image_dict)
images[image_data.image_id] = image_data
return images
def load_categories_data(
self,
category_dicts: List[JsonDict],
tqdm_desc: str = "Load categories",
) -> Dict[CategoryId, CategoryData]:
categories = {}
for category_dict in tqdm(category_dicts, desc=tqdm_desc):
category_data = CategoryData.from_dict(category_dict)
categories[category_data.category_id] = category_data
return categories
def get_features_base_dict(self):
return {
"image_id": ds.Value("int64"),
"image": ds.Image(),
"file_name": ds.Value("string"),
"coco_url": ds.Value("string"),
"height": ds.Value("int32"),
"width": ds.Value("int32"),
"date_captured": ds.Value("string"),
"flickr_url": ds.Value("string"),
"license_id": ds.Value("int32"),
"license": {
"url": ds.Value("string"),
"license_id": ds.Value("int8"),
"name": ds.Value("string"),
},
}
@abc.abstractmethod
def get_features(self, *args, **kwargs) -> ds.Features:
raise NotImplementedError
@abc.abstractmethod
def load_data(self, ann_dicts: List[JsonDict], tqdm_desc: str = "", **kwargs):
assert tqdm_desc != "", "tqdm_desc must be provided."
raise NotImplementedError
@abc.abstractmethod
def generate_examples(
self,
image_dir: str,
images: Dict[ImageId, ImageData],
annotations: Dict[ImageId, List[CaptionsAnnotationData]],
licenses: Dict[LicenseId, LicenseData],
**kwargs,
):
raise NotImplementedError
class CaptionsProcessor(MsCocoProcessor):
def get_features(self, *args, **kwargs) -> ds.Features:
features_dict = self.get_features_base_dict()
annotations = ds.Sequence(
{
"annotation_id": ds.Value("int64"),
"image_id": ds.Value("int64"),
"caption": ds.Value("string"),
}
)
features_dict.update({"annotations": annotations})
return ds.Features(features_dict)
def load_data(
self,
ann_dicts: List[JsonDict],
tqdm_desc: str = "Load captions data",
**kwargs,
) -> Dict[ImageId, List[CaptionsAnnotationData]]:
annotations = defaultdict(list)
for ann_dict in tqdm(ann_dicts, desc=tqdm_desc):
ann_data = CaptionsAnnotationData.from_dict(ann_dict)
annotations[ann_data.image_id].append(ann_data)
return annotations
def generate_examples(
self,
image_dir: str,
images: Dict[ImageId, ImageData],
annotations: Dict[ImageId, List[CaptionsAnnotationData]],
licenses: Dict[LicenseId, LicenseData],
**kwargs,
) -> Iterator[Tuple[int, CaptionExample]]:
for idx, image_id in enumerate(images.keys()):
image_data = images[image_id]
image_anns = annotations[image_id]
assert len(image_anns) > 0
image = self.load_image(
image_path=os.path.join(image_dir, image_data.file_name),
)
example = asdict(image_data)
example["image"] = image
example["license"] = asdict(licenses[image_data.license_id])
example["annotations"] = []
for ann in image_anns:
example["annotations"].append(asdict(ann))
yield idx, example # type: ignore
class InstancesProcessor(MsCocoProcessor):
def get_features_instance_dict(self, decode_rle: bool):
segmentation_feature = (
ds.Image()
if decode_rle
else {
"counts": ds.Sequence(ds.Value("int64")),
"size": ds.Sequence(ds.Value("int32")),
}
)
return {
"annotation_id": ds.Value("int64"),
"image_id": ds.Value("int64"),
"segmentation": segmentation_feature,
"area": ds.Value("float32"),
"iscrowd": ds.Value("bool"),
"bbox": ds.Sequence(ds.Value("float32"), length=4),
"category_id": ds.Value("int32"),
"category": {
"category_id": ds.Value("int32"),
"name": ds.ClassLabel(
num_classes=len(CATEGORIES),
names=CATEGORIES,
),
"supercategory": ds.ClassLabel(
num_classes=len(SUPER_CATEGORIES),
names=SUPER_CATEGORIES,
),
},
}
def get_features(self, decode_rle: bool) -> ds.Features:
features_dict = self.get_features_base_dict()
annotations = ds.Sequence(
self.get_features_instance_dict(decode_rle=decode_rle)
)
features_dict.update({"annotations": annotations})
return ds.Features(features_dict)
def load_data( # type: ignore[override]
self,
ann_dicts: List[JsonDict],
images: Dict[ImageId, ImageData],
decode_rle: bool,
tqdm_desc: str = "Load instances data",
) -> Dict[ImageId, List[InstancesAnnotationData]]:
annotations = defaultdict(list)
ann_dicts = sorted(ann_dicts, key=lambda d: d["image_id"])
for ann_dict in tqdm(ann_dicts, desc=tqdm_desc):
ann_data = InstancesAnnotationData.from_dict(
ann_dict, images=images, decode_rle=decode_rle
)
annotations[ann_data.image_id].append(ann_data)
return annotations
def generate_examples( # type: ignore[override]
self,
image_dir: str,
images: Dict[ImageId, ImageData],
annotations: Dict[ImageId, List[InstancesAnnotationData]],
licenses: Dict[LicenseId, LicenseData],
categories: Dict[CategoryId, CategoryData],
) -> Iterator[Tuple[int, InstanceExample]]:
for idx, image_id in enumerate(images.keys()):
image_data = images[image_id]
image_anns = annotations[image_id]
if len(image_anns) < 1:
logger.warning(f"No annotation found for image id: {image_id}.")
continue
image = self.load_image(
image_path=os.path.join(image_dir, image_data.file_name),
)
example = asdict(image_data)
example["image"] = image
example["license"] = asdict(licenses[image_data.license_id])
example["annotations"] = []
for ann in image_anns:
ann_dict = asdict(ann)
category = categories[ann.category_id]
ann_dict["category"] = asdict(category)
example["annotations"].append(ann_dict)
yield idx, example # type: ignore
class PersonKeypointsProcessor(InstancesProcessor):
def get_features(self, decode_rle: bool) -> ds.Features:
features_dict = self.get_features_base_dict()
features_instance_dict = self.get_features_instance_dict(decode_rle=decode_rle)
features_instance_dict.update(
{
"keypoints": ds.Sequence(
{
"state": ds.Value("string"),
"x": ds.Value("int32"),
"y": ds.Value("int32"),
"v": ds.Value("int32"),
}
),
"num_keypoints": ds.Value("int32"),
}
)
annotations = ds.Sequence(features_instance_dict)
features_dict.update({"annotations": annotations})
return ds.Features(features_dict)
def load_data( # type: ignore[override]
self,
ann_dicts: List[JsonDict],
images: Dict[ImageId, ImageData],
decode_rle: bool,
tqdm_desc: str = "Load person keypoints data",
) -> Dict[ImageId, List[PersonKeypointsAnnotationData]]:
annotations = defaultdict(list)
ann_dicts = sorted(ann_dicts, key=lambda d: d["image_id"])
for ann_dict in tqdm(ann_dicts, desc=tqdm_desc):
ann_data = PersonKeypointsAnnotationData.from_dict(
ann_dict, images=images, decode_rle=decode_rle
)
annotations[ann_data.image_id].append(ann_data)
return annotations
def generate_examples( # type: ignore[override]
self,
image_dir: str,
images: Dict[ImageId, ImageData],
annotations: Dict[ImageId, List[PersonKeypointsAnnotationData]],
licenses: Dict[LicenseId, LicenseData],
categories: Dict[CategoryId, CategoryData],
) -> Iterator[Tuple[int, PersonKeypointExample]]:
for idx, image_id in enumerate(images.keys()):
image_data = images[image_id]
image_anns = annotations[image_id]
if len(image_anns) < 1:
# If there are no persons in the image,
# no keypoint annotations will be assigned.
continue
image = self.load_image(
image_path=os.path.join(image_dir, image_data.file_name),
)
example = asdict(image_data)
example["image"] = image
example["license"] = asdict(licenses[image_data.license_id])
example["annotations"] = []
for ann in image_anns:
ann_dict = asdict(ann)
category = categories[ann.category_id]
ann_dict["category"] = asdict(category)
example["annotations"].append(ann_dict)
yield idx, example # type: ignore
class MsCocoConfig(ds.BuilderConfig):
YEARS: Tuple[int, ...] = (
2014,
2017,
)
TASKS: Tuple[str, ...] = (
"captions",
"instances",
"person_keypoints",
)
def __init__(
self,
year: int,
coco_task: Union[str, Sequence[str]],
version: Optional[Union[ds.Version, str]],
decode_rle: bool = False,
data_dir: Optional[str] = None,
data_files: Optional[DataFilesDict] = None,
description: Optional[str] = None,
) -> None:
super().__init__(
name=self.config_name(year=year, task=coco_task),
version=version,
data_dir=data_dir,
data_files=data_files,
description=description,
)
self._check_year(year)
self._check_task(coco_task)
self._year = year
self._task = coco_task
self.processor = self.get_processor()
self.decode_rle = decode_rle
def _check_year(self, year: int) -> None:
assert year in self.YEARS, year
def _check_task(self, task: Union[str, Sequence[str]]) -> None:
if isinstance(task, str):
assert task in self.TASKS, task
elif isinstance(task, list) or isinstance(task, tuple):
for t in task:
assert t, task
else:
raise ValueError(f"Invalid task: {task}")
@property
def year(self) -> int:
return self._year
@property
def task(self) -> str:
if isinstance(self._task, str):
return self._task
elif isinstance(self._task, list) or isinstance(self._task, tuple):
return "-".join(sorted(self._task))
else:
raise ValueError(f"Invalid task: {self._task}")
def get_processor(self) -> MsCocoProcessor:
if self.task == "captions":
return CaptionsProcessor()
elif self.task == "instances":
return InstancesProcessor()
elif self.task == "person_keypoints":
return PersonKeypointsProcessor()
else:
raise ValueError(f"Invalid task: {self.task}")
@classmethod
def config_name(cls, year: int, task: Union[str, Sequence[str]]) -> str:
if isinstance(task, str):
return f"{year}-{task}"
elif isinstance(task, list) or isinstance(task, tuple):
task = "-".join(task)
return f"{year}-{task}"
else:
raise ValueError(f"Invalid task: {task}")
def dataset_configs(year: int, version: ds.Version) -> List[MsCocoConfig]:
return [
MsCocoConfig(
year=year,
coco_task="captions",
version=version,
),
MsCocoConfig(
year=year,
coco_task="instances",
version=version,
),
MsCocoConfig(
year=year,
coco_task="person_keypoints",
version=version,
),
# MsCocoConfig(
# year=year,
# coco_task=("captions", "instances"),
# version=version,
# ),
# MsCocoConfig(
# year=year,
# coco_task=("captions", "person_keypoints"),
# version=version,
# ),
]
def configs_2014(version: ds.Version) -> List[MsCocoConfig]:
return dataset_configs(year=2014, version=version)
def configs_2017(version: ds.Version) -> List[MsCocoConfig]:
return dataset_configs(year=2017, version=version)
class MsCocoDataset(ds.GeneratorBasedBuilder):
VERSION = ds.Version("1.0.0")
BUILDER_CONFIG_CLASS = MsCocoConfig
BUILDER_CONFIGS = configs_2014(version=VERSION) + configs_2017(version=VERSION)
@property
def year(self) -> int:
config: MsCocoConfig = self.config # type: ignore
return config.year
@property
def task(self) -> str:
config: MsCocoConfig = self.config # type: ignore
return config.task
def _info(self) -> ds.DatasetInfo:
processor: MsCocoProcessor = self.config.processor # type: ignore
features = processor.get_features(decode_rle=self.config.decode_rle) # type: ignore
return ds.DatasetInfo(
description=_DESCRIPTION,
citation=_CITATION,
homepage=_HOMEPAGE,
license=_LICENSE,
features=features,
)
def _split_generators(self, dl_manager: ds.DownloadManager):
file_paths = dl_manager.download_and_extract(_URLS[f"{self.year}"])
imgs = file_paths["images"] # type: ignore
anns = file_paths["annotations"] # type: ignore
return [
ds.SplitGenerator(
name=ds.Split.TRAIN, # type: ignore
gen_kwargs={
"base_image_dir": imgs["train"],
"base_annotation_dir": anns["train_validation"],
"split": "train",
},
),
ds.SplitGenerator(
name=ds.Split.VALIDATION, # type: ignore
gen_kwargs={
"base_image_dir": imgs["validation"],
"base_annotation_dir": anns["train_validation"],
"split": "val",
},
),
# ds.SplitGenerator(
# name=ds.Split.TEST, # type: ignore
# gen_kwargs={
# "base_image_dir": imgs["test"],
# "test_image_info_path": anns["test_image_info"],
# "split": "test",
# },
# ),
]
def _generate_train_val_examples(
self, split: str, base_image_dir: str, base_annotation_dir: str
):
image_dir = os.path.join(base_image_dir, f"{split}{self.year}")
ann_dir = os.path.join(base_annotation_dir, "annotations")
ann_file_path = os.path.join(ann_dir, f"{self.task}_{split}{self.year}.json")
processor: MsCocoProcessor = self.config.processor # type: ignore
ann_json = processor.load_annotation_json(ann_file_path=ann_file_path)
# info = AnnotationInfo.from_dict(ann_json["info"])
licenses = processor.load_licenses_data(license_dicts=ann_json["licenses"])
images = processor.load_images_data(image_dicts=ann_json["images"])
category_dicts = ann_json.get("categories")
categories = (
processor.load_categories_data(category_dicts=category_dicts)
if category_dicts is not None
else None
)
config: MsCocoConfig = self.config # type: ignore
yield from processor.generate_examples(
annotations=processor.load_data(
ann_dicts=ann_json["annotations"],
images=images,
decode_rle=config.decode_rle,
),
categories=categories,
image_dir=image_dir,
images=images,
licenses=licenses,
)
def _generate_test_examples(self, test_image_info_path: str):
raise NotImplementedError
def _generate_examples(
self,
split: MscocoSplits,
base_image_dir: Optional[str] = None,
base_annotation_dir: Optional[str] = None,
test_image_info_path: Optional[str] = None,
):
if split == "test" and test_image_info_path is not None:
yield from self._generate_test_examples(
test_image_info_path=test_image_info_path
)
elif (
split in get_args(MscocoSplits)
and base_image_dir is not None
and base_annotation_dir is not None
):
yield from self._generate_train_val_examples(
split=split,
base_image_dir=base_image_dir,
base_annotation_dir=base_annotation_dir,
)
else:
raise ValueError(
f"Invalid arguments: split = {split}, "
f"base_image_dir = {base_image_dir}, "
f"base_annotation_dir = {base_annotation_dir}, "
f"test_image_info_path = {test_image_info_path}",
)
|