shunk031 commited on
Commit
a126620
1 Parent(s): 79b0f44

fix for ver2 dataset (#3)

Browse files
Files changed (2) hide show
  1. tests/wrime_test.py +25 -0
  2. wrime.py +79 -102
tests/wrime_test.py CHANGED
@@ -27,3 +27,28 @@ def test_load_dataset(
27
  assert dataset["train"].num_rows == expected_train_num_rows # type: ignore
28
  assert dataset["validation"].num_rows == expected_val_num_rows # type: ignore
29
  assert dataset["test"].num_rows == expected_test_num_rows # type: ignore
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  assert dataset["train"].num_rows == expected_train_num_rows # type: ignore
28
  assert dataset["validation"].num_rows == expected_val_num_rows # type: ignore
29
  assert dataset["test"].num_rows == expected_test_num_rows # type: ignore
30
+
31
+ writer_readers = [
32
+ "writer",
33
+ "reader1",
34
+ "reader2",
35
+ "reader3",
36
+ "avg_readers",
37
+ ]
38
+ expected_keys = ["sentence", "user_id", "datetime"] + writer_readers
39
+
40
+ for split in ["train", "validation", "test"]:
41
+ split_dataset = dataset[split] # type: ignore
42
+
43
+ for data in split_dataset:
44
+ assert len(data.keys()) == len(expected_keys)
45
+ for expected_key in expected_keys:
46
+ assert expected_key in data.keys()
47
+
48
+ for k in writer_readers:
49
+ if dataset_name == "ver1":
50
+ assert len(data[k]) == 8 # 8 感情強度
51
+ elif dataset_name == "ver2":
52
+ assert len(data[k]) == 8 + 1 # 8 感情強度 + 1 感情極性
53
+ else:
54
+ raise ValueError(f"Invalid dataset version: {dataset_name}")
wrime.py CHANGED
@@ -1,5 +1,5 @@
1
  import logging
2
- from typing import TypedDict
3
 
4
  import datasets as ds
5
  import pandas as pd
@@ -60,15 +60,42 @@ def _fix_typo_in_dataset(df: pd.DataFrame) -> pd.DataFrame:
60
  return df
61
 
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  def _load_tsv(tsv_path: str) -> pd.DataFrame:
64
  logger.info(f"Load TSV file from {tsv_path}")
65
  df = pd.read_csv(tsv_path, delimiter="\t")
66
 
 
67
  df = _fix_typo_in_dataset(df)
 
68
 
69
  return df
70
 
71
 
 
 
 
 
 
 
 
 
 
 
 
 
72
  class WrimeDataset(ds.GeneratorBasedBuilder):
73
  BUILDER_CONFIGS = [
74
  ds.BuilderConfig(
@@ -83,64 +110,18 @@ class WrimeDataset(ds.GeneratorBasedBuilder):
83
  ),
84
  ]
85
 
86
- def _info(self) -> ds.DatasetInfo:
87
- features = ds.Features(
88
- {
89
- "sentence": ds.Value("string"),
90
- "user_id": ds.Value("string"),
91
- "datetime": ds.Value("string"),
92
- "writer": {
93
- "joy": ds.Value("uint8"),
94
- "sadness": ds.Value("uint8"),
95
- "anticipation": ds.Value("uint8"),
96
- "surprise": ds.Value("uint8"),
97
- "anger": ds.Value("uint8"),
98
- "fear": ds.Value("uint8"),
99
- "disgust": ds.Value("uint8"),
100
- "trust": ds.Value("uint8"),
101
- },
102
- "reader1": {
103
- "joy": ds.Value("uint8"),
104
- "sadness": ds.Value("uint8"),
105
- "anticipation": ds.Value("uint8"),
106
- "surprise": ds.Value("uint8"),
107
- "anger": ds.Value("uint8"),
108
- "fear": ds.Value("uint8"),
109
- "disgust": ds.Value("uint8"),
110
- "trust": ds.Value("uint8"),
111
- },
112
- "reader2": {
113
- "joy": ds.Value("uint8"),
114
- "sadness": ds.Value("uint8"),
115
- "anticipation": ds.Value("uint8"),
116
- "surprise": ds.Value("uint8"),
117
- "anger": ds.Value("uint8"),
118
- "fear": ds.Value("uint8"),
119
- "disgust": ds.Value("uint8"),
120
- "trust": ds.Value("uint8"),
121
- },
122
- "reader3": {
123
- "joy": ds.Value("uint8"),
124
- "sadness": ds.Value("uint8"),
125
- "anticipation": ds.Value("uint8"),
126
- "surprise": ds.Value("uint8"),
127
- "anger": ds.Value("uint8"),
128
- "fear": ds.Value("uint8"),
129
- "disgust": ds.Value("uint8"),
130
- "trust": ds.Value("uint8"),
131
- },
132
- "avg_readers": {
133
- "joy": ds.Value("uint8"),
134
- "sadness": ds.Value("uint8"),
135
- "anticipation": ds.Value("uint8"),
136
- "surprise": ds.Value("uint8"),
137
- "anger": ds.Value("uint8"),
138
- "fear": ds.Value("uint8"),
139
- "disgust": ds.Value("uint8"),
140
- "trust": ds.Value("uint8"),
141
- },
142
- }
143
- )
144
  return ds.DatasetInfo(
145
  description=_DESCRIPTION,
146
  features=features,
@@ -149,14 +130,27 @@ class WrimeDataset(ds.GeneratorBasedBuilder):
149
  citation=_CITATION,
150
  )
151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152
  def _split_generators(self, dl_manager: ds.DownloadManager):
153
  wrime_datasets = dl_manager.download_and_extract(_URLS)
154
  major_version_name = f"ver{self.config.version.major}" # type: ignore
155
 
156
  wrime_df = _load_tsv(tsv_path=wrime_datasets[major_version_name])
157
- tng_wrime_df = wrime_df[wrime_df["Train/Dev/Test"] == "train"]
158
- dev_wrime_df = wrime_df[wrime_df["Train/Dev/Test"] == "dev"]
159
- tst_wrime_df = wrime_df[wrime_df["Train/Dev/Test"] == "test"]
160
 
161
  return [
162
  ds.SplitGenerator(
@@ -173,51 +167,34 @@ class WrimeDataset(ds.GeneratorBasedBuilder):
173
  ),
174
  ]
175
 
176
- def _generate_examples( # type: ignore[override]
177
- self,
178
- df: pd.DataFrame,
179
- ):
180
  for i in range(len(df)):
181
  row_df = df.iloc[i]
182
 
183
  example_dict = {
184
- "sentence": row_df["Sentence"],
185
- "user_id": row_df["UserID"],
186
- "datetime": row_df["Datetime"],
187
  }
188
 
189
- example_dict["writer"] = {
190
- "joy": row_df["Writer_Joy"],
191
- "sadness": row_df["Writer_Sadness"],
192
- "anticipation": row_df["Writer_Anticipation"],
193
- "surprise": row_df["Writer_Surprise"],
194
- "anger": row_df["Writer_Anger"],
195
- "fear": row_df["Writer_Fear"],
196
- "disgust": row_df["Writer_Disgust"],
197
- "trust": row_df["Writer_Trust"],
198
- }
199
-
200
- for reader_num in range(1, 4):
201
- example_dict[f"reader{reader_num}"] = {
202
- "joy": row_df[f"Reader{reader_num}_Joy"],
203
- "sadness": row_df[f"Reader{reader_num}_Sadness"],
204
- "anticipation": row_df[f"Reader{reader_num}_Anticipation"],
205
- "surprise": row_df[f"Reader{reader_num}_Surprise"],
206
- "anger": row_df[f"Reader{reader_num}_Anger"],
207
- "fear": row_df[f"Reader{reader_num}_Fear"],
208
- "disgust": row_df[f"Reader{reader_num}_Disgust"],
209
- "trust": row_df[f"Reader{reader_num}_Trust"],
210
  }
211
-
212
- example_dict["avg_readers"] = {
213
- "joy": row_df["Avg. Readers_Joy"],
214
- "sadness": row_df["Avg. Readers_Sadness"],
215
- "anticipation": row_df["Avg. Readers_Anticipation"],
216
- "surprise": row_df["Avg. Readers_Surprise"],
217
- "anger": row_df["Avg. Readers_Anger"],
218
- "fear": row_df["Avg. Readers_Fear"],
219
- "disgust": row_df["Avg. Readers_Disgust"],
220
- "trust": row_df["Avg. Readers_Trust"],
221
- }
222
-
223
  yield i, example_dict
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import logging
2
+ from typing import Final, List, TypedDict
3
 
4
  import datasets as ds
5
  import pandas as pd
 
60
  return df
61
 
62
 
63
+ def _convert_column_name(df: pd.DataFrame) -> pd.DataFrame:
64
+
65
+ # ['Sentence', 'UserID', 'Datetime', 'Train/Dev/Test', 'Writer_Joy', ...]
66
+ # -> ['sentence', 'userid', 'datetime', 'train/dev/test', 'writer_joy', ...]
67
+ df.columns = df.columns.str.lower()
68
+
69
+ # ['avg. readers_joy', 'avg. readers_sadness', 'avg. readers_anticipation', ...]
70
+ # -> ['avg_readers_joy', 'avg_readers_sadness', 'avg_readers_anticipation', ...]
71
+ df.columns = df.columns.str.replace(". ", "_")
72
+
73
+ return df
74
+
75
+
76
  def _load_tsv(tsv_path: str) -> pd.DataFrame:
77
  logger.info(f"Load TSV file from {tsv_path}")
78
  df = pd.read_csv(tsv_path, delimiter="\t")
79
 
80
+ # some preprocessing
81
  df = _fix_typo_in_dataset(df)
82
+ df = _convert_column_name(df)
83
 
84
  return df
85
 
86
 
87
+ EIGHT_EMOTIONS: Final[List[str]] = [
88
+ "joy",
89
+ "sadness",
90
+ "anticipation",
91
+ "surprise",
92
+ "anger",
93
+ "fear",
94
+ "disgust",
95
+ "trust",
96
+ ]
97
+
98
+
99
  class WrimeDataset(ds.GeneratorBasedBuilder):
100
  BUILDER_CONFIGS = [
101
  ds.BuilderConfig(
 
110
  ),
111
  ]
112
 
113
+ def __info(self, emotions: List[str]) -> ds.DatasetInfo:
114
+ features_dict = {
115
+ "sentence": ds.Value("string"),
116
+ "user_id": ds.Value("string"),
117
+ "datetime": ds.Value("string"),
118
+ }
119
+
120
+ readers = [f"reader{i}" for i in range(1, 4)] + ["avg_readers"]
121
+ for k in ["writer"] + readers:
122
+ features_dict[k] = {emotion: ds.Value("int8") for emotion in emotions} # type: ignore
123
+ features = ds.Features(features_dict)
124
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
  return ds.DatasetInfo(
126
  description=_DESCRIPTION,
127
  features=features,
 
130
  citation=_CITATION,
131
  )
132
 
133
+ def _info(self) -> ds.DatasetInfo:
134
+
135
+ if self.config.version.major == 1: # type: ignore
136
+ # Ver.1: 80人の筆者から収集した43,200件の投稿に感情強度をラベル付け
137
+ return self.__info(emotions=EIGHT_EMOTIONS)
138
+
139
+ elif self.config.version.major == 2: # type: ignore
140
+ # Ver.2: 60人の筆者から収集した35,000件の投稿(Ver.1のサブセット)に感情極性を追加でラベル付け
141
+ return self.__info(emotions=EIGHT_EMOTIONS + ["sentiment"])
142
+
143
+ else:
144
+ raise ValueError(f"Invalid dataset version: {self.config.version}")
145
+
146
  def _split_generators(self, dl_manager: ds.DownloadManager):
147
  wrime_datasets = dl_manager.download_and_extract(_URLS)
148
  major_version_name = f"ver{self.config.version.major}" # type: ignore
149
 
150
  wrime_df = _load_tsv(tsv_path=wrime_datasets[major_version_name])
151
+ tng_wrime_df = wrime_df[wrime_df["train/dev/test"] == "train"]
152
+ dev_wrime_df = wrime_df[wrime_df["train/dev/test"] == "dev"]
153
+ tst_wrime_df = wrime_df[wrime_df["train/dev/test"] == "test"]
154
 
155
  return [
156
  ds.SplitGenerator(
 
167
  ),
168
  ]
169
 
170
+ def __generate_examples(self, df: pd.DataFrame, emotions: List[str]):
 
 
 
171
  for i in range(len(df)):
172
  row_df = df.iloc[i]
173
 
174
  example_dict = {
175
+ "sentence": row_df["sentence"],
176
+ "user_id": row_df["userid"],
177
+ "datetime": row_df["datetime"],
178
  }
179
 
180
+ readers = [f"reader{i}" for i in range(1, 4)] + ["avg_readers"]
181
+ for k in ["writer"] + readers:
182
+ example_dict[k] = {
183
+ emotion: row_df[f"{k}_{emotion}"] for emotion in emotions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
  }
 
 
 
 
 
 
 
 
 
 
 
 
185
  yield i, example_dict
186
+
187
+ def _generate_examples(self, df: pd.DataFrame): # type: ignore[override]
188
+
189
+ if self.config.version.major == 1: # type: ignore
190
+ yield from self.__generate_examples(
191
+ df,
192
+ emotions=EIGHT_EMOTIONS,
193
+ )
194
+ elif self.config.version.major == 2: # type: ignore
195
+ yield from self.__generate_examples(
196
+ df,
197
+ emotions=EIGHT_EMOTIONS + ["sentiment"],
198
+ )
199
+ else:
200
+ raise ValueError(f"Invalid dataset version: {self.config.version}")