import datasets as ds import pytest @pytest.fixture def dataset_path() -> str: return "wrime.py" @pytest.mark.parametrize( "dataset_name, expected_train_num_rows, expected_val_num_rows, expected_test_num_rows,", ( ("ver1", 40000, 1200, 2000), ("ver2", 30000, 2500, 2500), ), ) def test_load_dataset( dataset_path: str, dataset_name: str, expected_train_num_rows: int, expected_val_num_rows: int, expected_test_num_rows: int, ) -> None: dataset = ds.load_dataset(path=dataset_path, name=dataset_name) assert dataset["train"].num_rows == expected_train_num_rows # type: ignore assert dataset["validation"].num_rows == expected_val_num_rows # type: ignore assert dataset["test"].num_rows == expected_test_num_rows # type: ignore writer_readers = [ "writer", "reader1", "reader2", "reader3", "avg_readers", ] expected_keys = ["sentence", "user_id", "datetime"] + writer_readers for split in ["train", "validation", "test"]: split_dataset = dataset[split] # type: ignore for data in split_dataset: assert len(data.keys()) == len(expected_keys) for expected_key in expected_keys: assert expected_key in data.keys() for k in writer_readers: if dataset_name == "ver1": assert len(data[k]) == 8 # 8 感情強度 elif dataset_name == "ver2": assert len(data[k]) == 8 + 1 # 8 感情強度 + 1 感情極性 else: raise ValueError(f"Invalid dataset version: {dataset_name}")