|
from transformers import ( |
|
pipeline, |
|
) |
|
import torch |
|
import json |
|
from transformers.pipelines.pt_utils import KeyDataset |
|
from tqdm import tqdm |
|
from datasets import Dataset |
|
from argparse import ArgumentParser |
|
from typing import Dict, List |
|
|
|
|
|
|
|
def make_prompt_mistral(data: Dict[str, List]) -> Dict[str, List]: |
|
prompt_template = "### Instruction:\n{instruct}:\n\n### Input:\n{input}\n\n### Response:\n" |
|
result = [] |
|
for doc in data["joke"]: |
|
prompt = prompt_template.format( |
|
instruct="For the following joke, add a | separator between intro part and the punchline. " |
|
"Do not change the sentence, only add a separator. " |
|
"Full sencence should be considered a punchline. " |
|
"A question is a full intro section, everything following a question must be considered punchline. " |
|
"Do not repeat the punchline, do not change words in the sentence.", |
|
input=doc, |
|
) |
|
result.append(prompt) |
|
return {"prompt": result} |
|
|
|
|
|
def make_prompt_llama3(data: Dict[str, List]) -> Dict[str, List]: |
|
prompt_template = "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{instruct}<|eot_id|>\n<|start_header_id|>user<|end_header_id|>\n\n{input}<|eot_id|>\n<|start_header_id|>assistant<|end_header_id|>\n\n" |
|
result = [] |
|
for doc in data["joke"]: |
|
prompt = prompt_template.format( |
|
instruct="For the following joke, add a | separator between intro part and the punchline. " |
|
"Do not change the sentence, only add a separator. " |
|
"Full sencence should be considered a punchline. " |
|
"A question is a full intro section, everything following a question must be considered punchline. " |
|
"Do not repeat the punchline, do not change words in the sentence. " |
|
"Do not repeat this instruction, only output the result." |
|
"Do not tell you're an assistant.", |
|
input=doc[:256], |
|
) |
|
result.append(prompt) |
|
return {"prompt": result} |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = ArgumentParser(prog="batch_split", description="dadjokes") |
|
parser.add_argument("--data", action="store", help="path to reddit.csv", required=True) |
|
parser.add_argument("--out", action="store", help="path to out file", required=True) |
|
args = parser.parse_args() |
|
print(args) |
|
|
|
dataset = Dataset.from_csv(args.data, split="train") |
|
generator = pipeline( |
|
task="text-generation", |
|
|
|
model="meta-llama/Meta-Llama-3-8B-Instruct", |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
) |
|
generator.tokenizer.pad_token_id = 128009 |
|
|
|
prompts = KeyDataset(dataset.map(function=make_prompt_llama3, batched=True), "prompt") |
|
with open(args.out, "w") as f: |
|
for result in tqdm( |
|
generator( |
|
prompts, |
|
return_full_text=False, |
|
max_new_tokens=128, |
|
num_return_sequences=1, |
|
batch_size=24, |
|
), |
|
total=len(prompts), |
|
): |
|
raw_text = result[0]["generated_text"].split("\n") |
|
joke = raw_text[-1] |
|
if "|" in joke: |
|
tokens = joke.split("|") |
|
if len(tokens) == 2: |
|
intro = tokens[0].strip() |
|
punch = tokens[1].strip() |
|
if len(intro) > 10 and len(punch) > 5: |
|
f.write(json.dumps({"input": intro, "output": punch}) + "\n") |
|
|