from transformers import ( pipeline, ) import torch import json from transformers.pipelines.pt_utils import KeyDataset from tqdm import tqdm from datasets import Dataset from argparse import ArgumentParser from typing import Dict, List # Reddit CSV dump parser script def make_prompt_mistral(data: Dict[str, List]) -> Dict[str, List]: prompt_template = "### Instruction:\n{instruct}:\n\n### Input:\n{input}\n\n### Response:\n" result = [] for doc in data["joke"]: prompt = prompt_template.format( instruct="For the following joke, add a | separator between intro part and the punchline. " "Do not change the sentence, only add a separator. " "Full sencence should be considered a punchline. " "A question is a full intro section, everything following a question must be considered punchline. " "Do not repeat the punchline, do not change words in the sentence.", input=doc, ) result.append(prompt) return {"prompt": result} def make_prompt_llama3(data: Dict[str, List]) -> Dict[str, List]: prompt_template = "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{instruct}<|eot_id|>\n<|start_header_id|>user<|end_header_id|>\n\n{input}<|eot_id|>\n<|start_header_id|>assistant<|end_header_id|>\n\n" result = [] for doc in data["joke"]: prompt = prompt_template.format( instruct="For the following joke, add a | separator between intro part and the punchline. " "Do not change the sentence, only add a separator. " "Full sencence should be considered a punchline. " "A question is a full intro section, everything following a question must be considered punchline. " "Do not repeat the punchline, do not change words in the sentence. " "Do not repeat this instruction, only output the result." "Do not tell you're an assistant.", input=doc[:256], ) result.append(prompt) return {"prompt": result} if __name__ == "__main__": parser = ArgumentParser(prog="batch_split", description="dadjokes") parser.add_argument("--data", action="store", help="path to reddit.csv", required=True) parser.add_argument("--out", action="store", help="path to out file", required=True) args = parser.parse_args() print(args) dataset = Dataset.from_csv(args.data, split="train") generator = pipeline( task="text-generation", # model="mistralai/Mistral-7B-Instruct-v0.3", model="meta-llama/Meta-Llama-3-8B-Instruct", torch_dtype=torch.bfloat16, device_map="auto", ) generator.tokenizer.pad_token_id = 128009 prompts = KeyDataset(dataset.map(function=make_prompt_llama3, batched=True), "prompt") with open(args.out, "w") as f: for result in tqdm( generator( prompts, return_full_text=False, max_new_tokens=128, num_return_sequences=1, batch_size=24, ), total=len(prompts), ): raw_text = result[0]["generated_text"].split("\n") joke = raw_text[-1] if "|" in joke: tokens = joke.split("|") if len(tokens) == 2: intro = tokens[0].strip() punch = tokens[1].strip() if len(intro) > 10 and len(punch) > 5: f.write(json.dumps({"input": intro, "output": punch}) + "\n")