File size: 5,556 Bytes
1567450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
680e566
 
 
1567450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
680e566
 
 
1567450
 
 
 
 
 
 
 
 
 
 
680e566
1567450
 
 
77110bb
1567450
 
 
 
 
 
 
 
 
 
 
 
680e566
1567450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
680e566
 
 
 
 
1567450
 
 
 
 
 
680e566
 
 
 
1567450
 
 
680e566
1567450
 
 
680e566
 
 
 
1567450
 
 
 
 
 
 
 
680e566
 
1567450
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
LCCC: Large-scale Cleaned Chinese Conversation corpus (LCCC) is a large corpus of Chinese conversations.
A rigorous data cleaning pipeline is designed to ensure the quality of the corpus.
This pipeline involves a set of rules and several classifier-based filters.
Noises such as offensive or sensitive words, special symbols, emojis,
grammatically incorrect sentences, and incoherent conversations are filtered.
"""

import json
import os

import datasets


# BibTeX citation
_CITATION = """\
@inproceedings{wang2020chinese,
title={A Large-Scale Chinese Short-Text Conversation Dataset},
author={Wang, Yida and Ke, Pei and Zheng, Yinhe and Huang, Kaili and Jiang, Yong and Zhu, Xiaoyan and Huang, Minlie},
booktitle={NLPCC},
year={2020},
url={https://arxiv.org/abs/2008.03946}
}
"""

# Description of the dataset here
_DESCRIPTION = """\
LCCC: Large-scale Cleaned Chinese Conversation corpus (LCCC) is a large corpus of Chinese conversations.
A rigorous data cleaning pipeline is designed to ensure the quality of the corpus.
This pipeline involves a set of rules and several classifier-based filters.
Noises such as offensive or sensitive words, special symbols, emojis,
grammatically incorrect sentences, and incoherent conversations are filtered.
"""

_HOMEPAGE = "https://github.com/thu-coai/CDial-GPT"
_LICENSE = "MIT"
_URLS = {
    "large": "https://huggingface.co/datasets/silver/lccc/resolve/main/lccc_large.jsonl.gz",
    "base": {
        "train": "https://huggingface.co/datasets/silver/lccc/resolve/main/lccc_base_train.jsonl.gz",
        "valid": "https://huggingface.co/datasets/silver/lccc/resolve/main/lccc_base_valid.jsonl.gz",
        "test": "https://huggingface.co/datasets/silver/lccc/resolve/main/lccc_base_test.jsonl.gz",
    },
}


class LCCC(datasets.GeneratorBasedBuilder):
    """Large-scale Cleaned Chinese Conversation corpus."""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="large", version=VERSION, description="The large version of LCCC"),
        datasets.BuilderConfig(name="base", version=VERSION, description="The base version of LCCC"),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "dialog": [datasets.Value("string")],
            }
        )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = _URLS[self.config.name]
        downloaded_data = dl_manager.download_and_extract(urls)
        if self.config.name == "large":
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepath": os.path.join(downloaded_data),
                        "split": "train",
                    },
                )
            ]
        if self.config.name == "base":
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepath": os.path.join(downloaded_data["train"]),
                        "split": "train",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={"filepath": os.path.join(downloaded_data["test"]), "split": "test"},
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "filepath": os.path.join(downloaded_data["valid"]),
                        "split": "dev",
                    },
                ),
            ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        with open(filepath, encoding="utf-8") as f:
            for key, row in enumerate(f):
                row = row.strip()
                if len(row) == 0:
                    continue
                yield key, {
                    "dialog": json.loads(row),
                }