|
import json |
|
import datasets |
|
from datasets import Sequence, ClassLabel, Value |
|
|
|
_TRAIN_FILE = "MACCROBAT2020-V2.json" |
|
_NAME = "MACCROBAT_biomedical_ner" |
|
_TRAIN_URL = f"https://huggingface.co/datasets/singh-aditya/{_NAME}/raw/main/{_TRAIN_FILE}" |
|
class MACCROBAT_biomedical_ner(datasets.GeneratorBasedBuilder): |
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description="", |
|
features=datasets.Features( |
|
{ |
|
"full_text": Value(dtype="string"), |
|
"ner_info": [ |
|
{ |
|
"text": Value(dtype="string"), |
|
"label": Value(dtype="string"), |
|
"start": Value(dtype="int64"), |
|
"end": Value(dtype="int64"), |
|
} |
|
], |
|
"tokens": Sequence(Value(dtype="string")), |
|
"ner_labels": Sequence( |
|
ClassLabel( |
|
names=[ |
|
"O", |
|
"B-ACTIVITY", |
|
"I-ACTIVITY", |
|
"I-ADMINISTRATION", |
|
"B-ADMINISTRATION", |
|
"B-AGE", |
|
"I-AGE", |
|
"I-AREA", |
|
"B-AREA", |
|
"B-BIOLOGICAL_ATTRIBUTE", |
|
"I-BIOLOGICAL_ATTRIBUTE", |
|
"I-BIOLOGICAL_STRUCTURE", |
|
"B-BIOLOGICAL_STRUCTURE", |
|
"B-CLINICAL_EVENT", |
|
"I-CLINICAL_EVENT", |
|
"B-COLOR", |
|
"I-COLOR", |
|
"I-COREFERENCE", |
|
"B-COREFERENCE", |
|
"B-DATE", |
|
"I-DATE", |
|
"I-DETAILED_DESCRIPTION", |
|
"B-DETAILED_DESCRIPTION", |
|
"I-DIAGNOSTIC_PROCEDURE", |
|
"B-DIAGNOSTIC_PROCEDURE", |
|
"I-DISEASE_DISORDER", |
|
"B-DISEASE_DISORDER", |
|
"B-DISTANCE", |
|
"I-DISTANCE", |
|
"B-DOSAGE", |
|
"I-DOSAGE", |
|
"I-DURATION", |
|
"B-DURATION", |
|
"I-FAMILY_HISTORY", |
|
"B-FAMILY_HISTORY", |
|
"B-FREQUENCY", |
|
"I-FREQUENCY", |
|
"I-HEIGHT", |
|
"B-HEIGHT", |
|
"B-HISTORY", |
|
"I-HISTORY", |
|
"I-LAB_VALUE", |
|
"B-LAB_VALUE", |
|
"I-MASS", |
|
"B-MASS", |
|
"I-MEDICATION", |
|
"B-MEDICATION", |
|
"I-NONBIOLOGICAL_LOCATION", |
|
"B-NONBIOLOGICAL_LOCATION", |
|
"I-OCCUPATION", |
|
"B-OCCUPATION", |
|
"B-OTHER_ENTITY", |
|
"I-OTHER_ENTITY", |
|
"B-OTHER_EVENT", |
|
"I-OTHER_EVENT", |
|
"I-OUTCOME", |
|
"B-OUTCOME", |
|
"I-PERSONAL_BACKGROUND", |
|
"B-PERSONAL_BACKGROUND", |
|
"B-QUALITATIVE_CONCEPT", |
|
"I-QUALITATIVE_CONCEPT", |
|
"I-QUANTITATIVE_CONCEPT", |
|
"B-QUANTITATIVE_CONCEPT", |
|
"B-SEVERITY", |
|
"I-SEVERITY", |
|
"B-SEX", |
|
"I-SEX", |
|
"B-SHAPE", |
|
"I-SHAPE", |
|
"B-SIGN_SYMPTOM", |
|
"I-SIGN_SYMPTOM", |
|
"B-SUBJECT", |
|
"I-SUBJECT", |
|
"B-TEXTURE", |
|
"I-TEXTURE", |
|
"B-THERAPEUTIC_PROCEDURE", |
|
"I-THERAPEUTIC_PROCEDURE", |
|
"I-TIME", |
|
"B-TIME", |
|
"B-VOLUME", |
|
"I-VOLUME", |
|
"I-WEIGHT", |
|
"B-WEIGHT", |
|
] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="", |
|
citation="", |
|
) |
|
|
|
def _split_generators(self, a): |
|
"""Returns SplitGenerators.""" |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": _TRAIN_URL}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
with open(filepath, encoding="utf-8") as f: |
|
datas = json.load(f) |
|
datas = datas["data"] |
|
guid = 0 |
|
for data in datas: |
|
yield guid, data |
|
guid += 1 |
|
|
|
|