|
#include <iostream> |
|
#include <bitset> |
|
#include <unordered_set> |
|
using namespace std; |
|
|
|
typedef long long ll; |
|
typedef unordered_set<int> usi; |
|
|
|
ll sieve_size; |
|
bitset<10000000> bs; |
|
usi primes, carmichael; |
|
|
|
void sieve(ll upperbound = 65000) { |
|
sieve_size=upperbound+1; bs.set(); bs[0]=bs[1]=0; |
|
for (ll i=2; i<=sieve_size; i++) if(bs[i]) { |
|
for (ll j=i*i; j<=sieve_size; j+=i) bs[j] = 0; |
|
primes.insert((int)i); |
|
} |
|
} |
|
|
|
long long pwr(long long b, long long e, long long mod) { |
|
if (e == 0) return 1%mod; |
|
if (e == 1) return b%mod; |
|
long long aux = pwr(b, e/2, mod); |
|
aux = (aux*aux)%mod; |
|
if (e%2) aux = (aux*(b%mod))%mod; |
|
return aux; |
|
} |
|
|
|
int main() { |
|
sieve(); |
|
for (int i = 3; i <= 65000; i++) { |
|
if (primes.count(i)) continue; |
|
bool ok = true; |
|
for (int j = 2; j < i && ok; j++) { |
|
ok = pwr(j, i, i) == j; |
|
} |
|
if (ok) carmichael.insert(i); |
|
} |
|
int n; |
|
while (cin >> n && n) { |
|
if (carmichael.count(n)) printf("The number %d is a Carmichael number.\n", n); |
|
else printf("%d is normal.\n", n); |
|
} |
|
return 0; |
|
} |
|
|