add extraction script
Browse files- extract_data.py +91 -0
extract_data.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Script to generate splits for benchmarking text embedding clustering.
|
2 |
+
Data and preprocessing based on 10kGNAD dataset (https://github.com/tblock/10kGNAD)."""
|
3 |
+
|
4 |
+
import random
|
5 |
+
import re
|
6 |
+
import sqlite3
|
7 |
+
import sys
|
8 |
+
|
9 |
+
import jsonlines
|
10 |
+
import numpy as np
|
11 |
+
import pandas as pd
|
12 |
+
from bs4 import BeautifulSoup
|
13 |
+
from sklearn.model_selection import train_test_split
|
14 |
+
from tqdm import tqdm
|
15 |
+
|
16 |
+
random.seed(42)
|
17 |
+
|
18 |
+
# path to corpus file, can be retrieved from here: https://github.com/tblock/10kGNAD/releases/download/v1.0/corpus.sqlite3
|
19 |
+
DATA_PATH = sys.argv[1]
|
20 |
+
|
21 |
+
INCLUDE_BODY = (
|
22 |
+
False # True: combine title and article body (p2p), False: only title (s2s)
|
23 |
+
)
|
24 |
+
ARTICLE_QUERY = f"SELECT Path, Title{', Body' if INCLUDE_BODY else ''} FROM Articles WHERE PATH LIKE 'Newsroom/%' AND PATH NOT LIKE 'Newsroom/User%' ORDER BY Path"
|
25 |
+
|
26 |
+
NUM_SPLITS = 10
|
27 |
+
SPLIT_RANGE = np.array([0.1, 1.0])
|
28 |
+
|
29 |
+
|
30 |
+
def get_split(frame, split_range=SPLIT_RANGE):
|
31 |
+
samples = random.randint(*(split_range * len(frame)).astype(int))
|
32 |
+
return frame.sample(samples).to_dict("list")
|
33 |
+
|
34 |
+
|
35 |
+
def write_sets(name, sets):
|
36 |
+
with jsonlines.open(name, "w") as f_out:
|
37 |
+
f_out.write_all(sets)
|
38 |
+
|
39 |
+
|
40 |
+
conn = sqlite3.connect(DATA_PATH)
|
41 |
+
cursor = conn.cursor()
|
42 |
+
|
43 |
+
samples = []
|
44 |
+
for row in tqdm(cursor.execute(ARTICLE_QUERY).fetchall(), unit_scale=True):
|
45 |
+
path, title = row[0], row[1]
|
46 |
+
|
47 |
+
text = title
|
48 |
+
|
49 |
+
if INCLUDE_BODY:
|
50 |
+
body = row[-1]
|
51 |
+
soup = BeautifulSoup(body, "html.parser")
|
52 |
+
|
53 |
+
# get description from subheadline
|
54 |
+
description_obj = soup.find("h2", {"itemprop": "description"})
|
55 |
+
if description_obj is not None:
|
56 |
+
text += (
|
57 |
+
" " + description_obj.text.replace("\n", " ").replace("\t", " ").strip()
|
58 |
+
)
|
59 |
+
|
60 |
+
# get text from paragraphs
|
61 |
+
text_container = soup.find("div", {"class": "copytext"})
|
62 |
+
if text_container is not None:
|
63 |
+
for p in text_container.findAll("p"):
|
64 |
+
text += " " + (
|
65 |
+
p.text.replace("\n", " ")
|
66 |
+
.replace("\t", " ")
|
67 |
+
.replace('"', "")
|
68 |
+
.replace("'", "")
|
69 |
+
+ " "
|
70 |
+
)
|
71 |
+
text = text.strip()
|
72 |
+
|
73 |
+
# remove article autors
|
74 |
+
for author in re.findall(
|
75 |
+
r"\.\ \(.+,.+2[0-9]+\)", text[-50:]
|
76 |
+
): # some articles have a year of 21015..
|
77 |
+
text = text.replace(author, ".")
|
78 |
+
|
79 |
+
# get label from path
|
80 |
+
label = path.split("/")[1]
|
81 |
+
samples.append([text, label])
|
82 |
+
|
83 |
+
conn.close()
|
84 |
+
|
85 |
+
samples = pd.DataFrame(samples, columns=["sentences", "labels"])
|
86 |
+
|
87 |
+
sets = []
|
88 |
+
for _ in range(NUM_SPLITS):
|
89 |
+
sets.append(get_split(samples))
|
90 |
+
|
91 |
+
write_sets("test.jsonl", sets)
|