--- license: cc-by-nc-sa-4.0 language: - de tags: - embeddings - clustering - benchmark size_categories: - 10KGerman. The datasets contains news article titles and is based on the dataset of the [One Million Posts Corpus](https://ofai.github.io/million-post-corpus/) and [10kGNAD](https://github.com/tblock/10kGNAD). It contains 10'267 unique samples, 10 splits with 1'436 to 9'962 samples and 9 unique classes. Splits are built similarly to MTEB's [TwentyNewsgroupsClustering](https://huggingface.co/datasets/mteb/twentynewsgroups-clustering). Have a look at German Text Embedding Clustering Benchmark ([Github](https://github.com/ClimSocAna/tecb-de), [Paper](https://arxiv.org/abs/2401.02709)) for more infos, datasets and evaluation results. If you use this dataset in your work, please cite the following paper: ``` @inproceedings{wehrli-etal-2023-german, title = "{G}erman Text Embedding Clustering Benchmark", author = "Wehrli, Silvan and Arnrich, Bert and Irrgang, Christopher", editor = "Georges, Munir and Herygers, Aaricia and Friedrich, Annemarie and Roth, Benjamin", booktitle = "Proceedings of the 19th Conference on Natural Language Processing (KONVENS 2023)", month = sep, year = "2023", address = "Ingolstadt, Germany", publisher = "Association for Computational Lingustics", url = "https://aclanthology.org/2023.konvens-main.20", pages = "187--201", } ```