import os import torch import torch.nn as nn from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM # get model and tokenizer def get_inference_model(model_dir): inference_tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True) inference_model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).half().cuda() inference_model.eval() return inference_tokenizer, inference_model # get llama model and tokenizer def get_inference_model_llama(model_dir): inference_model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16) inference_tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True) device = "cuda" inference_model.to(device) return inference_tokenizer, inference_model # get mistral model and tokenizer def get_inference_model_mistral(model_dir): inference_model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16) inference_tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True) # inference_tokenizer.pad_token = inference_tokenizer.eos_token device = "cuda" inference_model.to(device) return inference_tokenizer, inference_model # get glm model response def get_local_response(query, model, tokenizer, max_length=2048, truncation=True, do_sample=False, max_new_tokens=1024, temperature=0.7): cnt = 2 all_response = '' while cnt: try: inputs = tokenizer([query], return_tensors="pt", truncation=truncation, max_length=max_length).to('cuda') output_ = model.generate(**inputs, do_sample=do_sample, max_new_tokens=max_new_tokens, temperature=temperature) output = output_.tolist()[0][len(inputs["input_ids"][0]):] response = tokenizer.decode(output) print(f'obtain response:{response}\n') all_response = response break except Exception as e: print(f'Error:{e}, obtain response again...\n') cnt -= 1 if not cnt: return [] split_response = all_response.strip().split('\n') return split_response # get llama model response # def get_local_response_llama(query, model, tokenizer, max_length=2048, truncation=True, max_new_tokens=1024, temperature=0.7, do_sample=False): # cnt = 2 # all_response = '' # # messages = [{"role": "user", "content": query}] # # data = tokenizer.apply_chat_template(messages, return_tensors="pt").cuda() # terminators = [ # tokenizer.eos_token_id, # tokenizer.convert_tokens_to_ids("<|eot_id|>") # ] # message = '<|start_header_id|>user<|end_header_id|>\n\n{query}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n'.format(query=query) # data = tokenizer.encode_plus(message, max_length=max_length, truncation=truncation, return_tensors='pt') # input_ids = data['input_ids'].to('cuda') # attention_mask = data['attention_mask'].to('cuda') # while cnt: # try: # # query = "Human: " + query + "Assistant: " # # input_ids = tokenizer([query], return_tensors="pt", add_special_tokens=False).input_ids.to('cuda') # output = model.generate(input_ids, attention_mask=attention_mask, do_sample=do_sample, max_new_tokens=max_new_tokens, temperature=temperature, eos_token_id=terminators, pad_token_id=tokenizer.eos_token_id) # ori_string = tokenizer.decode(output[0], skip_special_tokens=False) # processed_string = ori_string.split('<|end_header_id|>')[2].strip().split('<|eot_id|>')[0].strip() # response = processed_string.split('<|end_of_text|>')[0].strip() # # print(f'获得回复:{response}\n') # all_response = response # break # except Exception as e: # print(f'Error:{e}, obtain response again...\n') # cnt -= 1 # if not cnt: # return [] # # split_response = all_response.split("Assistant:")[-1].strip().split('\n') # split_response = all_response.split('\n') # return split_response # def get_local_response_llama(query, model, tokenizer, max_length=2048, truncation=True, max_new_tokens=2048, temperature=0.7, do_sample=False): # cnt = 2 # all_response = '' # # messages = [{"role": "user", "content": query}] # # data = tokenizer.apply_chat_template(messages, return_tensors="pt").cuda() # terminators = [ # tokenizer.eos_token_id, # # tokenizer.convert_tokens_to_ids("<|eot_id|>") # ] # # message = '<|start_header_id|>user<|end_header_id|>\n\n{query}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n'.format(query=query) # message = '<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n'.format(query=query) # data = tokenizer.encode_plus(message, max_length=max_length, truncation=truncation, return_tensors='pt') # input_ids = data['input_ids'].to('cuda') # attention_mask = data['attention_mask'].to('cuda') # while cnt: # try: # # query = "Human: " + query + "Assistant: " # # input_ids = tokenizer([query], return_tensors="pt", add_special_tokens=False).input_ids.to('cuda') # output = model.generate(input_ids, attention_mask=attention_mask, do_sample=do_sample, max_new_tokens=max_new_tokens, temperature=temperature, eos_token_id=terminators, pad_token_id=tokenizer.eos_token_id) # ori_string = tokenizer.decode(output[0], skip_special_tokens=False) # # processed_string = ori_string.split('<|end_header_id|>')[2].strip().split('<|eot_id|>')[0].strip() # # processed_string = ori_string.split('<|end_header_id|>')[2].strip().split('<|eot_id|>')[0].strip() # # response = processed_string.split('<|end_of_text|>')[0].strip() # response = ori_string.split('|im_start|>assistant')[-1].strip() # # print(f'获得回复:{response}\n') # all_response = response.replace('<|im_end|>', '') # break # except Exception as e: # print(f'Error:{e}, obtain response again...\n') # cnt -= 1 # if not cnt: # return [] # # split_response = all_response.split("Assistant:")[-1].strip().split('\n') # split_response = all_response.split('\n') # return split_response # ================================QwQ 32B preview Version================================ def get_local_response_llama(query, model, tokenizer, max_length=2048, truncation=True, max_new_tokens=2048, temperature=0.7, do_sample=False): cnt = 2 all_response = '' terminators = [ tokenizer.eos_token_id, ] messages = [ {"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."}, {"role": "user", "content": query} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) while cnt: try: generated_ids = model.generate( **model_inputs, do_sample=do_sample, max_new_tokens=3062, temperature=temperature, eos_token_id=terminators, ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] all_response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] break except Exception as e: print(f'Error:{e}, obtain response again...\n') cnt -= 1 if not cnt: return [] split_response = all_response.split('\n') return split_response # get mistral model response def get_local_response_mistral(query, model, tokenizer, max_length=1024, truncation=True, max_new_tokens=1024, temperature=0.7, do_sample=False): cnt = 2 all_response = '' # messages = [{"role": "user", "content": query}] # data = tokenizer.apply_chat_template(messages, max_length=max_length, truncation=truncation, return_tensors="pt").cuda() message = '[INST]' + query + '[/INST]' data = tokenizer.encode_plus(message, max_length=max_length, truncation=truncation, return_tensors='pt') input_ids = data['input_ids'].to('cuda') attention_mask = data['attention_mask'].to('cuda') while cnt: try: output = model.generate(input_ids, attention_mask=attention_mask, max_new_tokens=max_new_tokens, do_sample=do_sample, temperature=temperature, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id) ori_string = tokenizer.decode(output[0]) processed_string = ori_string.split('[/INST]')[1].strip() response = processed_string.split('')[0].strip() print(f'obtain response:{response}\n') all_response = response break except Exception as e: print(f'Error:{e}, obtain response again...\n') cnt -= 1 if not cnt: return [] all_response = all_response.split('The answer is:')[0].strip() # intermediate steps should not always include a final answer ans_count = all_response.split('####') if len(ans_count) >= 2: all_response = ans_count[0] + 'Therefore, the answer is:' + ans_count[1] all_response = all_response.replace('[SOL]', '').replace('[ANS]', '').replace('[/ANS]', '').replace('[INST]', '').replace('[/INST]', '').replace('[ANSW]', '').replace('[/ANSW]', '') # remove unique answer mark for mistral split_response = all_response.split('\n') return split_response