The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 4 new columns ({'split', 'Dataset', 'num_samples', 'attributes'}) and 3 missing columns ({'updated_at', 'config', 'chunks'}).

This happened while the json dataset builder was generating data using

hf://datasets/snchen1230/DFC2022/train/metadata.json (at revision 924096d82960b419227904859b5bb5440e8f516e)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              Dataset: string
              split: string
              num_samples: int64
              attributes: struct<image: struct<dtype: string, format: string>, class: struct<dtype: string, format: string>, height: struct<dtype: string, format: string, unit: string>, classes: struct<0: string, 1: string, 2: string, 3: string, 4: string, 5: string, 6: string, 7: string, 8: string, 9: string, 10: string, 11: string, 12: string, 13: string, 14: string, 15: string>>
                child 0, image: struct<dtype: string, format: string>
                    child 0, dtype: string
                    child 1, format: string
                child 1, class: struct<dtype: string, format: string>
                    child 0, dtype: string
                    child 1, format: string
                child 2, height: struct<dtype: string, format: string, unit: string>
                    child 0, dtype: string
                    child 1, format: string
                    child 2, unit: string
                child 3, classes: struct<0: string, 1: string, 2: string, 3: string, 4: string, 5: string, 6: string, 7: string, 8: string, 9: string, 10: string, 11: string, 12: string, 13: string, 14: string, 15: string>
                    child 0, 0: string
                    child 1, 1: string
                    child 2, 2: string
                    child 3, 3: string
                    child 4, 4: string
                    child 5, 5: string
                    child 6, 6: string
                    child 7, 7: string
                    child 8, 8: string
                    child 9, 9: string
                    child 10, 10: string
                    child 11, 11: string
                    child 12, 12: string
                    child 13, 13: string
                    child 14, 14: string
                    child 15, 15: string
              to
              {'chunks': [{'chunk_bytes': Value(dtype='int64', id=None), 'chunk_size': Value(dtype='int64', id=None), 'dim': Value(dtype='null', id=None), 'filename': Value(dtype='string', id=None)}], 'config': {'chunk_bytes': Value(dtype='int64', id=None), 'chunk_size': Value(dtype='null', id=None), 'compression': Value(dtype='null', id=None), 'data_format': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'data_spec': Value(dtype='string', id=None), 'encryption': Value(dtype='null', id=None), 'item_loader': Value(dtype='string', id=None)}, 'updated_at': Value(dtype='string', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1412, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 988, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 4 new columns ({'split', 'Dataset', 'num_samples', 'attributes'}) and 3 missing columns ({'updated_at', 'config', 'chunks'}).
              
              This happened while the json dataset builder was generating data using
              
              hf://datasets/snchen1230/DFC2022/train/metadata.json (at revision 924096d82960b419227904859b5bb5440e8f516e)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

chunks
list
config
dict
updated_at
string
Dataset
string
split
string
num_samples
int64
attributes
dict
[ { "chunk_bytes": 240096628, "chunk_size": 10, "dim": null, "filename": "chunk-0-0.bin" }, { "chunk_bytes": 240048640, "chunk_size": 10, "dim": null, "filename": "chunk-0-1.bin" }, { "chunk_bytes": 240108634, "chunk_size": 10, "dim": null, "filename": "chunk-0-2.bin" }, { "chunk_bytes": 240096640, "chunk_size": 10, "dim": null, "filename": "chunk-0-3.bin" }, { "chunk_bytes": 240060622, "chunk_size": 10, "dim": null, "filename": "chunk-0-4.bin" }, { "chunk_bytes": 240048628, "chunk_size": 10, "dim": null, "filename": "chunk-0-5.bin" }, { "chunk_bytes": 240072634, "chunk_size": 10, "dim": null, "filename": "chunk-0-6.bin" }, { "chunk_bytes": 240108640, "chunk_size": 10, "dim": null, "filename": "chunk-0-7.bin" }, { "chunk_bytes": 240060622, "chunk_size": 10, "dim": null, "filename": "chunk-0-8.bin" }, { "chunk_bytes": 120024314, "chunk_size": 5, "dim": null, "filename": "chunk-0-9.bin" }, { "chunk_bytes": 240048628, "chunk_size": 10, "dim": null, "filename": "chunk-1-0.bin" }, { "chunk_bytes": 240108640, "chunk_size": 10, "dim": null, "filename": "chunk-1-1.bin" }, { "chunk_bytes": 240048616, "chunk_size": 10, "dim": null, "filename": "chunk-1-2.bin" }, { "chunk_bytes": 240084640, "chunk_size": 10, "dim": null, "filename": "chunk-1-3.bin" }, { "chunk_bytes": 240096628, "chunk_size": 10, "dim": null, "filename": "chunk-1-4.bin" }, { "chunk_bytes": 240096640, "chunk_size": 10, "dim": null, "filename": "chunk-1-5.bin" }, { "chunk_bytes": 240084634, "chunk_size": 10, "dim": null, "filename": "chunk-1-6.bin" }, { "chunk_bytes": 239988604, "chunk_size": 10, "dim": null, "filename": "chunk-1-7.bin" }, { "chunk_bytes": 240108640, "chunk_size": 10, "dim": null, "filename": "chunk-1-8.bin" }, { "chunk_bytes": 120048320, "chunk_size": 5, "dim": null, "filename": "chunk-1-9.bin" }, { "chunk_bytes": 240024622, "chunk_size": 10, "dim": null, "filename": "chunk-2-0.bin" }, { "chunk_bytes": 240108640, "chunk_size": 10, "dim": null, "filename": "chunk-2-1.bin" }, { "chunk_bytes": 240096640, "chunk_size": 10, "dim": null, "filename": "chunk-2-2.bin" }, { "chunk_bytes": 240024616, "chunk_size": 10, "dim": null, "filename": "chunk-2-3.bin" }, { "chunk_bytes": 240084640, "chunk_size": 10, "dim": null, "filename": "chunk-2-4.bin" }, { "chunk_bytes": 240096640, "chunk_size": 10, "dim": null, "filename": "chunk-2-5.bin" }, { "chunk_bytes": 240036610, "chunk_size": 10, "dim": null, "filename": "chunk-2-6.bin" }, { "chunk_bytes": 240060634, "chunk_size": 10, "dim": null, "filename": "chunk-2-7.bin" }, { "chunk_bytes": 240108640, "chunk_size": 10, "dim": null, "filename": "chunk-2-8.bin" }, { "chunk_bytes": 144036378, "chunk_size": 6, "dim": null, "filename": "chunk-2-9.bin" }, { "chunk_bytes": 240072616, "chunk_size": 10, "dim": null, "filename": "chunk-3-0.bin" }, { "chunk_bytes": 240108640, "chunk_size": 10, "dim": null, "filename": "chunk-3-1.bin" }, { "chunk_bytes": 240072634, "chunk_size": 10, "dim": null, "filename": "chunk-3-2.bin" }, { "chunk_bytes": 240024616, "chunk_size": 10, "dim": null, "filename": "chunk-3-3.bin" }, { "chunk_bytes": 240108640, "chunk_size": 10, "dim": null, "filename": "chunk-3-4.bin" }, { "chunk_bytes": 240060622, "chunk_size": 10, "dim": null, "filename": "chunk-3-5.bin" }, { "chunk_bytes": 240060634, "chunk_size": 10, "dim": null, "filename": "chunk-3-6.bin" }, { "chunk_bytes": 240096640, "chunk_size": 10, "dim": null, "filename": "chunk-3-7.bin" }, { "chunk_bytes": 240084622, "chunk_size": 10, "dim": null, "filename": "chunk-3-8.bin" }, { "chunk_bytes": 144072384, "chunk_size": 6, "dim": null, "filename": "chunk-3-9.bin" }, { "chunk_bytes": 240108640, "chunk_size": 10, "dim": null, "filename": "chunk-4-0.bin" }, { "chunk_bytes": 240060616, "chunk_size": 10, "dim": null, "filename": "chunk-4-1.bin" }, { "chunk_bytes": 240120640, "chunk_size": 10, "dim": null, "filename": "chunk-4-2.bin" }, { "chunk_bytes": 240036622, "chunk_size": 10, "dim": null, "filename": "chunk-4-3.bin" }, { "chunk_bytes": 240072640, "chunk_size": 10, "dim": null, "filename": "chunk-4-4.bin" }, { "chunk_bytes": 240180682, "chunk_size": 10, "dim": null, "filename": "chunk-4-5.bin" }, { "chunk_bytes": 240216688, "chunk_size": 10, "dim": null, "filename": "chunk-4-6.bin" }, { "chunk_bytes": 240204682, "chunk_size": 10, "dim": null, "filename": "chunk-4-7.bin" }, { "chunk_bytes": 240216688, "chunk_size": 10, "dim": null, "filename": "chunk-4-8.bin" }, { "chunk_bytes": 144120408, "chunk_size": 6, "dim": null, "filename": "chunk-4-9.bin" }, { "chunk_bytes": 240144658, "chunk_size": 10, "dim": null, "filename": "chunk-5-0.bin" }, { "chunk_bytes": 240228694, "chunk_size": 10, "dim": null, "filename": "chunk-5-1.bin" }, { "chunk_bytes": 240216688, "chunk_size": 10, "dim": null, "filename": "chunk-5-2.bin" }, { "chunk_bytes": 240204682, "chunk_size": 10, "dim": null, "filename": "chunk-5-3.bin" }, { "chunk_bytes": 240180670, "chunk_size": 10, "dim": null, "filename": "chunk-5-4.bin" }, { "chunk_bytes": 240216688, "chunk_size": 10, "dim": null, "filename": "chunk-5-5.bin" }, { "chunk_bytes": 240192676, "chunk_size": 10, "dim": null, "filename": "chunk-5-6.bin" }, { "chunk_bytes": 240144658, "chunk_size": 10, "dim": null, "filename": "chunk-5-7.bin" }, { "chunk_bytes": 240192676, "chunk_size": 10, "dim": null, "filename": "chunk-5-8.bin" }, { "chunk_bytes": 144132414, "chunk_size": 6, "dim": null, "filename": "chunk-5-9.bin" }, { "chunk_bytes": 240120658, "chunk_size": 10, "dim": null, "filename": "chunk-6-0.bin" }, { "chunk_bytes": 240216688, "chunk_size": 10, "dim": null, "filename": "chunk-6-1.bin" }, { "chunk_bytes": 240228694, "chunk_size": 10, "dim": null, "filename": "chunk-6-2.bin" }, { "chunk_bytes": 240132658, "chunk_size": 10, "dim": null, "filename": "chunk-6-3.bin" }, { "chunk_bytes": 240204682, "chunk_size": 10, "dim": null, "filename": "chunk-6-4.bin" }, { "chunk_bytes": 240192676, "chunk_size": 10, "dim": null, "filename": "chunk-6-5.bin" }, { "chunk_bytes": 240168670, "chunk_size": 10, "dim": null, "filename": "chunk-6-6.bin" }, { "chunk_bytes": 240216688, "chunk_size": 10, "dim": null, "filename": "chunk-6-7.bin" }, { "chunk_bytes": 240216688, "chunk_size": 10, "dim": null, "filename": "chunk-6-8.bin" }, { "chunk_bytes": 144096396, "chunk_size": 6, "dim": null, "filename": "chunk-6-9.bin" }, { "chunk_bytes": 240192676, "chunk_size": 10, "dim": null, "filename": "chunk-7-0.bin" }, { "chunk_bytes": 240180676, "chunk_size": 10, "dim": null, "filename": "chunk-7-1.bin" }, { "chunk_bytes": 240204688, "chunk_size": 10, "dim": null, "filename": "chunk-7-2.bin" }, { "chunk_bytes": 240204682, "chunk_size": 10, "dim": null, "filename": "chunk-7-3.bin" }, { "chunk_bytes": 240168664, "chunk_size": 10, "dim": null, "filename": "chunk-7-4.bin" }, { "chunk_bytes": 240228694, "chunk_size": 10, "dim": null, "filename": "chunk-7-5.bin" }, { "chunk_bytes": 240180670, "chunk_size": 10, "dim": null, "filename": "chunk-7-6.bin" }, { "chunk_bytes": 240216688, "chunk_size": 10, "dim": null, "filename": "chunk-7-7.bin" }, { "chunk_bytes": 240156664, "chunk_size": 10, "dim": null, "filename": "chunk-7-8.bin" }, { "chunk_bytes": 144132414, "chunk_size": 6, "dim": null, "filename": "chunk-7-9.bin" } ]
{ "chunk_bytes": 256000000, "chunk_size": null, "compression": null, "data_format": [ "numpy", "numpy", "numpy" ], "data_spec": "[1, {\"type\": \"builtins.dict\", \"context\": \"[\\\"image\\\", \\\"height\\\", \\\"class\\\"]\", \"children_spec\": [{\"type\": null, \"context\": null, \"children_spec\": []}, {\"type\": null, \"context\": null, \"children_spec\": []}, {\"type\": null, \"context\": null, \"children_spec\": []}]}]", "encryption": null, "item_loader": "PyTreeLoader" }
1735906484.05668
null
null
null
null
null
null
null
DFC2022
train
766
{ "image": { "dtype": "uint8", "format": "numpy" }, "class": { "dtype": "uint8", "format": "numpy" }, "height": { "dtype": "float16", "format": "numpy", "unit": "meters" }, "classes": { "0": "No information", "1": "Urban fabric", "2": "Industrial, commercial, public, military, private and transport units", "3": "Mine, dump and construction sites", "4": "Artificial non-agricultural vegetated areas", "5": "Arable land (annual crops)", "6": "Permanent crops", "7": "Pastures", "8": "Complex and mixed cultivation patterns", "9": "Orchards at the fringe of urban classes", "10": "Forests", "11": "Herbaceous vegetation associations", "12": "Open spaces with little or no vegetation", "13": "Wetlands", "14": "Water", "15": "Clouds and Shadows" } }