The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 4 new columns ({'split', 'Dataset', 'num_samples', 'attributes'}) and 3 missing columns ({'updated_at', 'config', 'chunks'}). This happened while the json dataset builder was generating data using hf://datasets/snchen1230/DFC2022/train/metadata.json (at revision 924096d82960b419227904859b5bb5440e8f516e) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast Dataset: string split: string num_samples: int64 attributes: struct<image: struct<dtype: string, format: string>, class: struct<dtype: string, format: string>, height: struct<dtype: string, format: string, unit: string>, classes: struct<0: string, 1: string, 2: string, 3: string, 4: string, 5: string, 6: string, 7: string, 8: string, 9: string, 10: string, 11: string, 12: string, 13: string, 14: string, 15: string>> child 0, image: struct<dtype: string, format: string> child 0, dtype: string child 1, format: string child 1, class: struct<dtype: string, format: string> child 0, dtype: string child 1, format: string child 2, height: struct<dtype: string, format: string, unit: string> child 0, dtype: string child 1, format: string child 2, unit: string child 3, classes: struct<0: string, 1: string, 2: string, 3: string, 4: string, 5: string, 6: string, 7: string, 8: string, 9: string, 10: string, 11: string, 12: string, 13: string, 14: string, 15: string> child 0, 0: string child 1, 1: string child 2, 2: string child 3, 3: string child 4, 4: string child 5, 5: string child 6, 6: string child 7, 7: string child 8, 8: string child 9, 9: string child 10, 10: string child 11, 11: string child 12, 12: string child 13, 13: string child 14, 14: string child 15, 15: string to {'chunks': [{'chunk_bytes': Value(dtype='int64', id=None), 'chunk_size': Value(dtype='int64', id=None), 'dim': Value(dtype='null', id=None), 'filename': Value(dtype='string', id=None)}], 'config': {'chunk_bytes': Value(dtype='int64', id=None), 'chunk_size': Value(dtype='null', id=None), 'compression': Value(dtype='null', id=None), 'data_format': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'data_spec': Value(dtype='string', id=None), 'encryption': Value(dtype='null', id=None), 'item_loader': Value(dtype='string', id=None)}, 'updated_at': Value(dtype='string', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1412, in compute_config_parquet_and_info_response parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet( File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 988, in stream_convert_to_parquet builder._prepare_split( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 4 new columns ({'split', 'Dataset', 'num_samples', 'attributes'}) and 3 missing columns ({'updated_at', 'config', 'chunks'}). This happened while the json dataset builder was generating data using hf://datasets/snchen1230/DFC2022/train/metadata.json (at revision 924096d82960b419227904859b5bb5440e8f516e) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
chunks
list | config
dict | updated_at
string | Dataset
string | split
string | num_samples
int64 | attributes
dict |
---|---|---|---|---|---|---|
[
{
"chunk_bytes": 240096628,
"chunk_size": 10,
"dim": null,
"filename": "chunk-0-0.bin"
},
{
"chunk_bytes": 240048640,
"chunk_size": 10,
"dim": null,
"filename": "chunk-0-1.bin"
},
{
"chunk_bytes": 240108634,
"chunk_size": 10,
"dim": null,
"filename": "chunk-0-2.bin"
},
{
"chunk_bytes": 240096640,
"chunk_size": 10,
"dim": null,
"filename": "chunk-0-3.bin"
},
{
"chunk_bytes": 240060622,
"chunk_size": 10,
"dim": null,
"filename": "chunk-0-4.bin"
},
{
"chunk_bytes": 240048628,
"chunk_size": 10,
"dim": null,
"filename": "chunk-0-5.bin"
},
{
"chunk_bytes": 240072634,
"chunk_size": 10,
"dim": null,
"filename": "chunk-0-6.bin"
},
{
"chunk_bytes": 240108640,
"chunk_size": 10,
"dim": null,
"filename": "chunk-0-7.bin"
},
{
"chunk_bytes": 240060622,
"chunk_size": 10,
"dim": null,
"filename": "chunk-0-8.bin"
},
{
"chunk_bytes": 120024314,
"chunk_size": 5,
"dim": null,
"filename": "chunk-0-9.bin"
},
{
"chunk_bytes": 240048628,
"chunk_size": 10,
"dim": null,
"filename": "chunk-1-0.bin"
},
{
"chunk_bytes": 240108640,
"chunk_size": 10,
"dim": null,
"filename": "chunk-1-1.bin"
},
{
"chunk_bytes": 240048616,
"chunk_size": 10,
"dim": null,
"filename": "chunk-1-2.bin"
},
{
"chunk_bytes": 240084640,
"chunk_size": 10,
"dim": null,
"filename": "chunk-1-3.bin"
},
{
"chunk_bytes": 240096628,
"chunk_size": 10,
"dim": null,
"filename": "chunk-1-4.bin"
},
{
"chunk_bytes": 240096640,
"chunk_size": 10,
"dim": null,
"filename": "chunk-1-5.bin"
},
{
"chunk_bytes": 240084634,
"chunk_size": 10,
"dim": null,
"filename": "chunk-1-6.bin"
},
{
"chunk_bytes": 239988604,
"chunk_size": 10,
"dim": null,
"filename": "chunk-1-7.bin"
},
{
"chunk_bytes": 240108640,
"chunk_size": 10,
"dim": null,
"filename": "chunk-1-8.bin"
},
{
"chunk_bytes": 120048320,
"chunk_size": 5,
"dim": null,
"filename": "chunk-1-9.bin"
},
{
"chunk_bytes": 240024622,
"chunk_size": 10,
"dim": null,
"filename": "chunk-2-0.bin"
},
{
"chunk_bytes": 240108640,
"chunk_size": 10,
"dim": null,
"filename": "chunk-2-1.bin"
},
{
"chunk_bytes": 240096640,
"chunk_size": 10,
"dim": null,
"filename": "chunk-2-2.bin"
},
{
"chunk_bytes": 240024616,
"chunk_size": 10,
"dim": null,
"filename": "chunk-2-3.bin"
},
{
"chunk_bytes": 240084640,
"chunk_size": 10,
"dim": null,
"filename": "chunk-2-4.bin"
},
{
"chunk_bytes": 240096640,
"chunk_size": 10,
"dim": null,
"filename": "chunk-2-5.bin"
},
{
"chunk_bytes": 240036610,
"chunk_size": 10,
"dim": null,
"filename": "chunk-2-6.bin"
},
{
"chunk_bytes": 240060634,
"chunk_size": 10,
"dim": null,
"filename": "chunk-2-7.bin"
},
{
"chunk_bytes": 240108640,
"chunk_size": 10,
"dim": null,
"filename": "chunk-2-8.bin"
},
{
"chunk_bytes": 144036378,
"chunk_size": 6,
"dim": null,
"filename": "chunk-2-9.bin"
},
{
"chunk_bytes": 240072616,
"chunk_size": 10,
"dim": null,
"filename": "chunk-3-0.bin"
},
{
"chunk_bytes": 240108640,
"chunk_size": 10,
"dim": null,
"filename": "chunk-3-1.bin"
},
{
"chunk_bytes": 240072634,
"chunk_size": 10,
"dim": null,
"filename": "chunk-3-2.bin"
},
{
"chunk_bytes": 240024616,
"chunk_size": 10,
"dim": null,
"filename": "chunk-3-3.bin"
},
{
"chunk_bytes": 240108640,
"chunk_size": 10,
"dim": null,
"filename": "chunk-3-4.bin"
},
{
"chunk_bytes": 240060622,
"chunk_size": 10,
"dim": null,
"filename": "chunk-3-5.bin"
},
{
"chunk_bytes": 240060634,
"chunk_size": 10,
"dim": null,
"filename": "chunk-3-6.bin"
},
{
"chunk_bytes": 240096640,
"chunk_size": 10,
"dim": null,
"filename": "chunk-3-7.bin"
},
{
"chunk_bytes": 240084622,
"chunk_size": 10,
"dim": null,
"filename": "chunk-3-8.bin"
},
{
"chunk_bytes": 144072384,
"chunk_size": 6,
"dim": null,
"filename": "chunk-3-9.bin"
},
{
"chunk_bytes": 240108640,
"chunk_size": 10,
"dim": null,
"filename": "chunk-4-0.bin"
},
{
"chunk_bytes": 240060616,
"chunk_size": 10,
"dim": null,
"filename": "chunk-4-1.bin"
},
{
"chunk_bytes": 240120640,
"chunk_size": 10,
"dim": null,
"filename": "chunk-4-2.bin"
},
{
"chunk_bytes": 240036622,
"chunk_size": 10,
"dim": null,
"filename": "chunk-4-3.bin"
},
{
"chunk_bytes": 240072640,
"chunk_size": 10,
"dim": null,
"filename": "chunk-4-4.bin"
},
{
"chunk_bytes": 240180682,
"chunk_size": 10,
"dim": null,
"filename": "chunk-4-5.bin"
},
{
"chunk_bytes": 240216688,
"chunk_size": 10,
"dim": null,
"filename": "chunk-4-6.bin"
},
{
"chunk_bytes": 240204682,
"chunk_size": 10,
"dim": null,
"filename": "chunk-4-7.bin"
},
{
"chunk_bytes": 240216688,
"chunk_size": 10,
"dim": null,
"filename": "chunk-4-8.bin"
},
{
"chunk_bytes": 144120408,
"chunk_size": 6,
"dim": null,
"filename": "chunk-4-9.bin"
},
{
"chunk_bytes": 240144658,
"chunk_size": 10,
"dim": null,
"filename": "chunk-5-0.bin"
},
{
"chunk_bytes": 240228694,
"chunk_size": 10,
"dim": null,
"filename": "chunk-5-1.bin"
},
{
"chunk_bytes": 240216688,
"chunk_size": 10,
"dim": null,
"filename": "chunk-5-2.bin"
},
{
"chunk_bytes": 240204682,
"chunk_size": 10,
"dim": null,
"filename": "chunk-5-3.bin"
},
{
"chunk_bytes": 240180670,
"chunk_size": 10,
"dim": null,
"filename": "chunk-5-4.bin"
},
{
"chunk_bytes": 240216688,
"chunk_size": 10,
"dim": null,
"filename": "chunk-5-5.bin"
},
{
"chunk_bytes": 240192676,
"chunk_size": 10,
"dim": null,
"filename": "chunk-5-6.bin"
},
{
"chunk_bytes": 240144658,
"chunk_size": 10,
"dim": null,
"filename": "chunk-5-7.bin"
},
{
"chunk_bytes": 240192676,
"chunk_size": 10,
"dim": null,
"filename": "chunk-5-8.bin"
},
{
"chunk_bytes": 144132414,
"chunk_size": 6,
"dim": null,
"filename": "chunk-5-9.bin"
},
{
"chunk_bytes": 240120658,
"chunk_size": 10,
"dim": null,
"filename": "chunk-6-0.bin"
},
{
"chunk_bytes": 240216688,
"chunk_size": 10,
"dim": null,
"filename": "chunk-6-1.bin"
},
{
"chunk_bytes": 240228694,
"chunk_size": 10,
"dim": null,
"filename": "chunk-6-2.bin"
},
{
"chunk_bytes": 240132658,
"chunk_size": 10,
"dim": null,
"filename": "chunk-6-3.bin"
},
{
"chunk_bytes": 240204682,
"chunk_size": 10,
"dim": null,
"filename": "chunk-6-4.bin"
},
{
"chunk_bytes": 240192676,
"chunk_size": 10,
"dim": null,
"filename": "chunk-6-5.bin"
},
{
"chunk_bytes": 240168670,
"chunk_size": 10,
"dim": null,
"filename": "chunk-6-6.bin"
},
{
"chunk_bytes": 240216688,
"chunk_size": 10,
"dim": null,
"filename": "chunk-6-7.bin"
},
{
"chunk_bytes": 240216688,
"chunk_size": 10,
"dim": null,
"filename": "chunk-6-8.bin"
},
{
"chunk_bytes": 144096396,
"chunk_size": 6,
"dim": null,
"filename": "chunk-6-9.bin"
},
{
"chunk_bytes": 240192676,
"chunk_size": 10,
"dim": null,
"filename": "chunk-7-0.bin"
},
{
"chunk_bytes": 240180676,
"chunk_size": 10,
"dim": null,
"filename": "chunk-7-1.bin"
},
{
"chunk_bytes": 240204688,
"chunk_size": 10,
"dim": null,
"filename": "chunk-7-2.bin"
},
{
"chunk_bytes": 240204682,
"chunk_size": 10,
"dim": null,
"filename": "chunk-7-3.bin"
},
{
"chunk_bytes": 240168664,
"chunk_size": 10,
"dim": null,
"filename": "chunk-7-4.bin"
},
{
"chunk_bytes": 240228694,
"chunk_size": 10,
"dim": null,
"filename": "chunk-7-5.bin"
},
{
"chunk_bytes": 240180670,
"chunk_size": 10,
"dim": null,
"filename": "chunk-7-6.bin"
},
{
"chunk_bytes": 240216688,
"chunk_size": 10,
"dim": null,
"filename": "chunk-7-7.bin"
},
{
"chunk_bytes": 240156664,
"chunk_size": 10,
"dim": null,
"filename": "chunk-7-8.bin"
},
{
"chunk_bytes": 144132414,
"chunk_size": 6,
"dim": null,
"filename": "chunk-7-9.bin"
}
] | {
"chunk_bytes": 256000000,
"chunk_size": null,
"compression": null,
"data_format": [
"numpy",
"numpy",
"numpy"
],
"data_spec": "[1, {\"type\": \"builtins.dict\", \"context\": \"[\\\"image\\\", \\\"height\\\", \\\"class\\\"]\", \"children_spec\": [{\"type\": null, \"context\": null, \"children_spec\": []}, {\"type\": null, \"context\": null, \"children_spec\": []}, {\"type\": null, \"context\": null, \"children_spec\": []}]}]",
"encryption": null,
"item_loader": "PyTreeLoader"
} | 1735906484.05668 | null | null | null | null |
null | null | null | DFC2022 | train | 766 | {
"image": {
"dtype": "uint8",
"format": "numpy"
},
"class": {
"dtype": "uint8",
"format": "numpy"
},
"height": {
"dtype": "float16",
"format": "numpy",
"unit": "meters"
},
"classes": {
"0": "No information",
"1": "Urban fabric",
"2": "Industrial, commercial, public, military, private and transport units",
"3": "Mine, dump and construction sites",
"4": "Artificial non-agricultural vegetated areas",
"5": "Arable land (annual crops)",
"6": "Permanent crops",
"7": "Pastures",
"8": "Complex and mixed cultivation patterns",
"9": "Orchards at the fringe of urban classes",
"10": "Forests",
"11": "Herbaceous vegetation associations",
"12": "Open spaces with little or no vegetation",
"13": "Wetlands",
"14": "Water",
"15": "Clouds and Shadows"
}
} |