The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 4 new columns ({'split', 'attributes', 'Dataset', 'num_samples'}) and 3 missing columns ({'updated_at', 'config', 'chunks'}).

This happened while the json dataset builder was generating data using

hf://datasets/snchen1230/LoveDA/train/metadata.json (at revision ae7b9643d7af5a9522b7ba6aa2e4914077473614)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              Dataset: string
              split: string
              num_samples: int64
              attributes: struct<image: struct<dtype: string, format: string>, class: struct<dtype: string, format: string>, classes: struct<1: string, 2: string, 3: string, 4: string, 5: string, 6: string, 7: string>>
                child 0, image: struct<dtype: string, format: string>
                    child 0, dtype: string
                    child 1, format: string
                child 1, class: struct<dtype: string, format: string>
                    child 0, dtype: string
                    child 1, format: string
                child 2, classes: struct<1: string, 2: string, 3: string, 4: string, 5: string, 6: string, 7: string>
                    child 0, 1: string
                    child 1, 2: string
                    child 2, 3: string
                    child 3, 4: string
                    child 4, 5: string
                    child 5, 6: string
                    child 6, 7: string
              to
              {'chunks': [{'chunk_bytes': Value(dtype='int64', id=None), 'chunk_size': Value(dtype='int64', id=None), 'dim': Value(dtype='null', id=None), 'filename': Value(dtype='string', id=None)}], 'config': {'chunk_bytes': Value(dtype='int64', id=None), 'chunk_size': Value(dtype='null', id=None), 'compression': Value(dtype='null', id=None), 'data_format': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'data_spec': Value(dtype='string', id=None), 'encryption': Value(dtype='null', id=None), 'item_loader': Value(dtype='string', id=None)}, 'updated_at': Value(dtype='string', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1412, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 988, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 4 new columns ({'split', 'attributes', 'Dataset', 'num_samples'}) and 3 missing columns ({'updated_at', 'config', 'chunks'}).
              
              This happened while the json dataset builder was generating data using
              
              hf://datasets/snchen1230/LoveDA/train/metadata.json (at revision ae7b9643d7af5a9522b7ba6aa2e4914077473614)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

chunks
list
config
dict
updated_at
string
Dataset
string
split
string
num_samples
int64
attributes
dict
[ { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-0-0.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-0-1.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-0-2.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-0-3.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-0-4.bin" }, { "chunk_bytes": 41943480, "chunk_size": 10, "dim": null, "filename": "chunk-0-5.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-1-0.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-1-1.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-1-2.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-1-3.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-1-4.bin" }, { "chunk_bytes": 41943480, "chunk_size": 10, "dim": null, "filename": "chunk-1-5.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-2-0.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-2-1.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-2-2.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-2-3.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-2-4.bin" }, { "chunk_bytes": 41943480, "chunk_size": 10, "dim": null, "filename": "chunk-2-5.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-3-0.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-3-1.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-3-2.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-3-3.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-3-4.bin" }, { "chunk_bytes": 41943480, "chunk_size": 10, "dim": null, "filename": "chunk-3-5.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-4-0.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-4-1.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-4-2.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-4-3.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-4-4.bin" }, { "chunk_bytes": 41943480, "chunk_size": 10, "dim": null, "filename": "chunk-4-5.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-5-0.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-5-1.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-5-2.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-5-3.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-5-4.bin" }, { "chunk_bytes": 41943480, "chunk_size": 10, "dim": null, "filename": "chunk-5-5.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-6-0.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-6-1.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-6-2.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-6-3.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-6-4.bin" }, { "chunk_bytes": 46137828, "chunk_size": 11, "dim": null, "filename": "chunk-6-5.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-7-0.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-7-1.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-7-2.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-7-3.bin" }, { "chunk_bytes": 255855228, "chunk_size": 61, "dim": null, "filename": "chunk-7-4.bin" }, { "chunk_bytes": 46137828, "chunk_size": 11, "dim": null, "filename": "chunk-7-5.bin" } ]
{ "chunk_bytes": 256000000, "chunk_size": null, "compression": null, "data_format": [ "numpy", "numpy" ], "data_spec": "[1, {\"type\": \"builtins.dict\", \"context\": \"[\\\"image\\\", \\\"class\\\"]\", \"children_spec\": [{\"type\": null, \"context\": null, \"children_spec\": []}, {\"type\": null, \"context\": null, \"children_spec\": []}]}]", "encryption": null, "item_loader": "PyTreeLoader" }
1736265298.75455
null
null
null
null
null
null
null
LoveDA
train
2,522
{ "image": { "dtype": "uint8", "format": "numpy" }, "class": { "dtype": "uint8", "format": "numpy" }, "classes": { "1": "background", "2": "building", "3": "road", "4": "water", "5": "barren", "6": "forest", "7": "agriculture" } }