The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 4 new columns ({'split', 'Dataset', 'num_samples', 'attributes'}) and 3 missing columns ({'updated_at', 'chunks', 'config'}). This happened while the json dataset builder was generating data using hf://datasets/snchen1230/PatternNet/main/metadata.json (at revision 2d045bed513066035349f2f398880d1523e2b1f7) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast Dataset: string split: string num_samples: int64 attributes: struct<name: struct<dtype: string>, image: struct<dtype: string, format: string>, class: struct<dtype: string, format: string>, classes: struct<0: string, 1: string, 2: string, 3: string, 4: string, 5: string, 6: string, 7: string, 8: string, 9: string, 10: string, 11: string, 12: string, 13: string, 14: string, 15: string, 16: string, 17: string, 18: string, 19: string, 20: string, 21: string, 22: string, 23: string, 24: string, 25: string, 26: string, 27: string, 28: string, 29: string, 30: string, 31: string, 32: string, 33: string, 34: string, 35: string, 36: string, 37: string>> child 0, name: struct<dtype: string> child 0, dtype: string child 1, image: struct<dtype: string, format: string> child 0, dtype: string child 1, format: string child 2, class: struct<dtype: string, format: string> child 0, dtype: string child 1, format: string child 3, classes: struct<0: string, 1: string, 2: string, 3: string, 4: string, 5: string, 6: string, 7: string, 8: string, 9: string, 10: string, 11: string, 12: string, 13: string, 14: string, 15: string, 16: string, 17: string, 18: string, 19: string, 20: string, 21: string, 22: string, 23: string, 24: string, 25: string, 26: string, 27: string, 28: string, 29: string, 30: string, 31: string, 32: string, 33: string, 34: string, 35: string, 36: string, 37: string> child 0, 0: string child 1, 1: string child 2, 2: string child 3, 3: string child 4, 4: string child 5, 5: string child 6, 6: string child 7, 7: string child 8, 8: string child 9, 9: string child 10, 10: string child 11, 11: string child 12, 12: string child 13, 13: string child 14, 14: string child 15, 15: string child 16, 16: string child 17, 17: string child 18, 18: string child 19, 19: string child 20, 20: string child 21, 21: string child 22, 22: string child 23, 23: string child 24, 24: string child 25, 25: string child 26, 26: string child 27, 27: string child 28, 28: string child 29, 29: string child 30, 30: string child 31, 31: string child 32, 32: string child 33, 33: string child 34, 34: string child 35, 35: string child 36, 36: string child 37, 37: string to {'chunks': [{'chunk_bytes': Value(dtype='int64', id=None), 'chunk_size': Value(dtype='int64', id=None), 'dim': Value(dtype='null', id=None), 'filename': Value(dtype='string', id=None)}], 'config': {'chunk_bytes': Value(dtype='int64', id=None), 'chunk_size': Value(dtype='null', id=None), 'compression': Value(dtype='null', id=None), 'data_format': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'data_spec': Value(dtype='string', id=None), 'encryption': Value(dtype='null', id=None), 'item_loader': Value(dtype='string', id=None)}, 'updated_at': Value(dtype='string', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1412, in compute_config_parquet_and_info_response parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet( File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 988, in stream_convert_to_parquet builder._prepare_split( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 4 new columns ({'split', 'Dataset', 'num_samples', 'attributes'}) and 3 missing columns ({'updated_at', 'chunks', 'config'}). This happened while the json dataset builder was generating data using hf://datasets/snchen1230/PatternNet/main/metadata.json (at revision 2d045bed513066035349f2f398880d1523e2b1f7) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
chunks
list | config
dict | updated_at
string | Dataset
string | split
string | num_samples
int64 | attributes
dict |
---|---|---|---|---|---|---|
[
{
"chunk_bytes": 255848500,
"chunk_size": 1300,
"dim": null,
"filename": "chunk-0-0.bin"
},
{
"chunk_bytes": 255842300,
"chunk_size": 1300,
"dim": null,
"filename": "chunk-0-1.bin"
},
{
"chunk_bytes": 236160600,
"chunk_size": 1200,
"dim": null,
"filename": "chunk-0-2.bin"
},
{
"chunk_bytes": 255845100,
"chunk_size": 1300,
"dim": null,
"filename": "chunk-1-0.bin"
},
{
"chunk_bytes": 255841900,
"chunk_size": 1300,
"dim": null,
"filename": "chunk-1-1.bin"
},
{
"chunk_bytes": 236162000,
"chunk_size": 1200,
"dim": null,
"filename": "chunk-1-2.bin"
},
{
"chunk_bytes": 255841200,
"chunk_size": 1300,
"dim": null,
"filename": "chunk-2-0.bin"
},
{
"chunk_bytes": 255846800,
"chunk_size": 1300,
"dim": null,
"filename": "chunk-2-1.bin"
},
{
"chunk_bytes": 236167200,
"chunk_size": 1200,
"dim": null,
"filename": "chunk-2-2.bin"
},
{
"chunk_bytes": 255846000,
"chunk_size": 1300,
"dim": null,
"filename": "chunk-3-0.bin"
},
{
"chunk_bytes": 255840000,
"chunk_size": 1300,
"dim": null,
"filename": "chunk-3-1.bin"
},
{
"chunk_bytes": 236158400,
"chunk_size": 1200,
"dim": null,
"filename": "chunk-3-2.bin"
},
{
"chunk_bytes": 255846000,
"chunk_size": 1300,
"dim": null,
"filename": "chunk-4-0.bin"
},
{
"chunk_bytes": 255847200,
"chunk_size": 1300,
"dim": null,
"filename": "chunk-4-1.bin"
},
{
"chunk_bytes": 236163600,
"chunk_size": 1200,
"dim": null,
"filename": "chunk-4-2.bin"
},
{
"chunk_bytes": 255837800,
"chunk_size": 1300,
"dim": null,
"filename": "chunk-5-0.bin"
},
{
"chunk_bytes": 255842200,
"chunk_size": 1300,
"dim": null,
"filename": "chunk-5-1.bin"
},
{
"chunk_bytes": 236167200,
"chunk_size": 1200,
"dim": null,
"filename": "chunk-5-2.bin"
},
{
"chunk_bytes": 255843000,
"chunk_size": 1300,
"dim": null,
"filename": "chunk-6-0.bin"
},
{
"chunk_bytes": 255842800,
"chunk_size": 1300,
"dim": null,
"filename": "chunk-6-1.bin"
},
{
"chunk_bytes": 236162600,
"chunk_size": 1200,
"dim": null,
"filename": "chunk-6-2.bin"
},
{
"chunk_bytes": 255842300,
"chunk_size": 1300,
"dim": null,
"filename": "chunk-7-0.bin"
},
{
"chunk_bytes": 255845700,
"chunk_size": 1300,
"dim": null,
"filename": "chunk-7-1.bin"
},
{
"chunk_bytes": 236162000,
"chunk_size": 1200,
"dim": null,
"filename": "chunk-7-2.bin"
}
] | {
"chunk_bytes": 256000000,
"chunk_size": null,
"compression": null,
"data_format": [
"str",
"numpy",
"pickle"
],
"data_spec": "[1, {\"type\": \"builtins.dict\", \"context\": \"[\\\"name\\\", \\\"image\\\", \\\"class\\\"]\", \"children_spec\": [{\"type\": null, \"context\": null, \"children_spec\": []}, {\"type\": null, \"context\": null, \"children_spec\": []}, {\"type\": null, \"context\": null, \"children_spec\": []}]}]",
"encryption": null,
"item_loader": "PyTreeLoader"
} | 1735832161.8123474 | null | null | null | null |
null | null | null | PatternNet | main | 30,400 | {
"name": {
"dtype": "str"
},
"image": {
"dtype": "uint8",
"format": "numpy"
},
"class": {
"dtype": "uint8",
"format": "numpy"
},
"classes": {
"0": "airplane",
"1": "baseball_field",
"2": "basketball_court",
"3": "beach",
"4": "bridge",
"5": "cemetery",
"6": "chaparral",
"7": "christmas_tree_farm",
"8": "closed_road",
"9": "coastal_mansion",
"10": "crosswalk",
"11": "dense_residential",
"12": "ferry_terminal",
"13": "football_field",
"14": "forest",
"15": "freeway",
"16": "golf_course",
"17": "harbor",
"18": "intersection",
"19": "mobile_home_park",
"20": "nursing_home",
"21": "oil_gas_field",
"22": "oil_well",
"23": "overpass",
"24": "parking_lot",
"25": "parking_space",
"26": "railway",
"27": "river",
"28": "runway",
"29": "runway_marking",
"30": "shipping_yard",
"31": "solar_panel",
"32": "sparse_residential",
"33": "storage_tank",
"34": "swimming_pool",
"35": "tennis_court",
"36": "transformer_station",
"37": "wastewater_treatment_plant"
}
} |