Datasets:

Languages:
Spanish
License:
clavel commited on
Commit
1977a1c
1 Parent(s): 14f1de6

Delete unam_tesisdataset/unam_tesis.py

Browse files
Files changed (1) hide show
  1. unam_tesisdataset/unam_tesis.py +0 -172
unam_tesisdataset/unam_tesis.py DELETED
@@ -1,172 +0,0 @@
1
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # TODO: Address all TODOs and remove all explanatory comments
15
- """TODO: Add a description here."""
16
-
17
-
18
- import csv
19
- import json
20
- import os
21
-
22
- import datasets
23
-
24
-
25
- # TODO: Add BibTeX citation
26
- # Find for instance the citation on arxiv or on the dataset repo/website
27
- _CITATION = """\
28
- @InProceedings{huggingface:dataset,
29
- title = {Unam tesis datasets dataset},
30
- author={huggingface, Inc.
31
- },
32
- year={2022}
33
- }
34
- """
35
-
36
- # TODO: Add description of the dataset here
37
- # You can copy an official description
38
- _DESCRIPTION = """\
39
- This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
40
- """
41
-
42
- # TODO: Add a link to an official homepage for the dataset here
43
- _HOMEPAGE = ""
44
-
45
- # TODO: Add the licence for the dataset here if you can find it
46
- _LICENSE = ""
47
-
48
- # TODO: Add link to the official dataset URLs here
49
- # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
50
- # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
51
- _URLS = {
52
- "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
53
- "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
54
- }
55
-
56
-
57
- # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
58
- class NewDataset(datasets.GeneratorBasedBuilder):
59
- """TODO: Short description of my dataset."""
60
-
61
- VERSION = datasets.Version("1.1.0")
62
-
63
- # This is an example of a dataset with multiple configurations.
64
- # If you don't want/need to define several sub-sets in your dataset,
65
- # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
66
-
67
- # If you need to make complex sub-parts in the datasets with configurable options
68
- # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
69
- # BUILDER_CONFIG_CLASS = MyBuilderConfig
70
-
71
- # You will be able to load one or the other configurations in the following list with
72
- # data = datasets.load_dataset('my_dataset', 'first_domain')
73
- # data = datasets.load_dataset('my_dataset', 'second_domain')
74
- BUILDER_CONFIGS = [
75
- datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
76
- datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
77
- ]
78
-
79
- DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
80
-
81
- def _info(self):
82
- # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
83
- if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
84
- features = datasets.Features(
85
- {
86
- "sentence": datasets.Value("string"),
87
- "option1": datasets.Value("string"),
88
- "answer": datasets.Value("string")
89
- # These are the features of your dataset like images, labels ...
90
- }
91
- )
92
- else: # This is an example to show how to have different features for "first_domain" and "second_domain"
93
- features = datasets.Features(
94
- {
95
- "sentence": datasets.Value("string"),
96
- "option2": datasets.Value("string"),
97
- "second_domain_answer": datasets.Value("string")
98
- # These are the features of your dataset like images, labels ...
99
- }
100
- )
101
- return datasets.DatasetInfo(
102
- # This is the description that will appear on the datasets page.
103
- description=_DESCRIPTION,
104
- # This defines the different columns of the dataset and their types
105
- features=features, # Here we define them above because they are different between the two configurations
106
- # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
107
- # specify them. They'll be used if as_supervised=True in builder.as_dataset.
108
- # supervised_keys=("sentence", "label"),
109
- # Homepage of the dataset for documentation
110
- homepage=_HOMEPAGE,
111
- # License for the dataset if available
112
- license=_LICENSE,
113
- # Citation for the dataset
114
- citation=_CITATION,
115
- )
116
-
117
- def _split_generators(self, dl_manager):
118
- # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
119
- # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
120
-
121
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
122
- # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
123
- # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
124
- urls = _URLS[self.config.name]
125
- data_dir = dl_manager.download_and_extract(urls)
126
- return [
127
- datasets.SplitGenerator(
128
- name=datasets.Split.TRAIN,
129
- # These kwargs will be passed to _generate_examples
130
- gen_kwargs={
131
- "filepath": os.path.join(data_dir, "train.jsonl"),
132
- "split": "train",
133
- },
134
- ),
135
- datasets.SplitGenerator(
136
- name=datasets.Split.TEST,
137
- # These kwargs will be passed to _generate_examples
138
- gen_kwargs={
139
- "filepath": os.path.join(data_dir, "test.jsonl"),
140
- "split": "test"
141
- },
142
- ),
143
- datasets.SplitGenerator(
144
- name=datasets.Split.VALIDATION,
145
- # These kwargs will be passed to _generate_examples
146
- gen_kwargs={
147
- "filepath": os.path.join(data_dir, "dev.jsonl"),
148
- "split": "dev",
149
- },
150
- ),
151
- ]
152
-
153
- # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
154
- def _generate_examples(self, filepath, split):
155
- # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
156
- # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
157
- with open(filepath, encoding="utf-8") as f:
158
- for key, row in enumerate(f):
159
- data = json.loads(row)
160
- if self.config.name == "first_domain":
161
- # Yields examples as (key, example) tuples
162
- yield key, {
163
- "sentence": data["sentence"],
164
- "option1": data["option1"],
165
- "answer": "" if split == "test" else data["answer"],
166
- }
167
- else:
168
- yield key, {
169
- "sentence": data["sentence"],
170
- "option2": data["option2"],
171
- "second_domain_answer": "" if split == "test" else data["second_domain_answer"],
172
- }