File size: 6,012 Bytes
0cc9e20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# -*- coding: utf-8 -*-
"""using_dataset_hugginface.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1soGxkZu4antYbYG23GioJ6zoSt_GhSNT
"""

"""**Hugginface loggin for push on Hub**"""
###
#
#  Used bibliografy:
#    https://huggingface.co/learn/nlp-course/chapter5/5
#
###

import os
import time
import math
from huggingface_hub import login
from datasets import load_dataset, concatenate_datasets
from functools import reduce
from pathlib import Path
import pandas as pd
import pathlib
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

HF_TOKEN = ''
DATASET_TO_LOAD = 'bigbio/distemist'
DATASET_TO_UPDATE = 'somosnlp/spanish_medica_llm'
DATASET_SOURCE_ID = '12'
BASE_DIR = "SPACC"  + os.sep + "SPACCC"  + os.sep + "SPACCC"  + os.sep + "corpus"

#Loggin to Huggin Face
login(token = HF_TOKEN)

dataset_CODING = load_dataset(DATASET_TO_LOAD)
royalListOfCode = {}
issues_path = 'dataset'
tokenizer = AutoTokenizer.from_pretrained("DeepESP/gpt2-spanish-medium")

#Read current path
path = Path(__file__).parent.absolute()
MAIN_FILE_ADRESS = str(path) + os.sep + BASE_DIR
#print ( os.listdir(str(path) + os.sep + BASE_DIR))

files = [ str(path) + os.sep + BASE_DIR + os.sep +  f for f in os.listdir(MAIN_FILE_ADRESS) if os.path.isfile(str(path) + os.sep + BASE_DIR + os.sep + f) and  pathlib.Path(MAIN_FILE_ADRESS + os.sep + f).suffix == ".txt" ]

#print (files)
for iFile in files:
    with open( iFile,encoding='utf8') as file:
      linesInFile = file.readlines()
      text = reduce(lambda a, b: a + " "+ b, linesInFile, "")

#print (dataset_CODING)

# with open( str(path) + os.sep + 'ICD-O-3_valid-codes.txt',encoding='utf8') as file:
#   """
#      # Build a dictionary with ICD-O-3 associated with 
#      # healtcare problems
#   """
#   linesInFile = file.readlines()
#   for iLine in linesInFile:
#     listOfData = iLine.split('\t')

#     code = listOfData[0]
#     description = reduce(lambda a, b: a + " "+ b, listOfData[1:2], "")
#     royalListOfCode[code.strip()] = description.strip()


# def getCodeDescription(labels_of_type, royalListOfCode):
#   """
#     Search description associated with some code 
#     in royalListOfCode

#   """
#   classification = [] 

#   for iValue in labels_of_type:
#     if iValue in  royalListOfCode.keys():
#       classification.append(royalListOfCode[iValue])
#   return classification


#     # raw_text: Texto asociado al documento, pregunta, caso clínico u otro tipo de información.

#     # topic: (puede ser healthcare_treatment, healthcare_diagnosis, tema, respuesta a pregunta, o estar vacío p.ej en el texto abierto)

#     # speciality: (especialidad médica a la que se relaciona el raw_text p.ej: cardiología, cirugía, otros)

#     # raw_text_type: (puede ser caso clínico, open_text, question)

#     # topic_type: (puede ser medical_topic, medical_diagnostic,answer,natural_medicine_topic, other, o vacio)

#     # source: Identificador de la fuente asociada al documento que aparece en el README y descripción del dataset.

#     # country: Identificador del país de procedencia de la fuente (p.ej.; ch, es) usando el estándar ISO 3166-1 alfa-2 (Códigos de país de dos letras.).
cantemistDstDict = {
  'raw_text': '',
  'topic': '',
  'speciallity': '',
  'raw_text_type': 'clinic_case',
  'topic_type': '',
  'source': DATASET_SOURCE_ID,
  'country': 'es',
  'document_id': ''
}

totalOfTokens = 0
corpusToLoad = []
countCopySeveralDocument = 0
counteOriginalDocument = 0

#print (dataset_CODING['train'][5]['entities'])

for iFile in files:
    with open( iFile,encoding='utf8') as file:
      linesInFile = file.readlines()
      text = reduce(lambda a, b: a + " "+ b, linesInFile, "")       
            #print ("Element in dataset")
            
            #Find topic or diagnosti clasification about the text
      counteOriginalDocument += 1

      listOfTokens = tokenizer.tokenize(text)
      currentSizeOfTokens = len(listOfTokens)
      totalOfTokens += currentSizeOfTokens
      newCorpusRow = cantemistDstDict.copy()

            
      newCorpusRow['raw_text'] = text
      newCorpusRow['document_id'] = str(counteOriginalDocument)
      corpusToLoad.append(newCorpusRow)
        

df = pd.DataFrame.from_records(corpusToLoad)

if os.path.exists(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl"):
  os.remove(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl")

df.to_json(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl", orient="records", lines=True)
print(
        f"Downloaded all the issues for {DATASET_TO_LOAD}! Dataset stored at {issues_path}/spanish_medical_llms.jsonl"
)

print(' On dataset there are as document ', counteOriginalDocument)
print(' On dataset there are as copy document ', countCopySeveralDocument)
print(' On dataset there are as size of Tokens ', totalOfTokens)
file = Path(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl")  # or Path('./doc.txt')
size = file.stat().st_size
print ('File size on Kilobytes (kB)', size >> 10)  # 5242880 kilobytes (kB)
print ('File size on Megabytes  (MB)', size >> 20 ) # 5120 megabytes (MB)
print ('File size on Gigabytes (GB)', size >> 30 ) # 5 gigabytes (GB)

#Once the issues are downloaded we can load them locally using our 
local_spanish_dataset = load_dataset("json", data_files=f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl", split="train")


##Update local dataset with cloud dataset
try:  
  spanish_dataset = load_dataset(DATASET_TO_UPDATE, split="train")
  print("=== Before ====")
  print(spanish_dataset)
  spanish_dataset = concatenate_datasets([spanish_dataset, local_spanish_dataset])
except Exception:
  spanish_dataset = local_spanish_dataset

spanish_dataset.push_to_hub(DATASET_TO_UPDATE)

print("=== After ====")
print(spanish_dataset)

# Augmenting the dataset

#Importan if exist element on DATASET_TO_UPDATE we must to update element 
# in list, and review if the are repeted elements