SMC / wikipedia_datasets /process_corpus.py
inoid's picture
Upload 6 files
6441714 verified
raw
history blame
5.17 kB
from pathlib import Path
import os
import numpy as np
import os
import time
import math
from huggingface_hub import login
from datasets import load_dataset, concatenate_datasets
from functools import reduce
import pandas as pd
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
HF_TOKEN = ''
DATASET_TO_LOAD = 'PlanTL-GOB-ES/pharmaconer'
DATASET_TO_UPDATE = 'somosnlp/spanish_medica_llm'
CSV_FILE_NAME = "enfermedades_long.csv"
#Loggin to Huggin Face
login(token = HF_TOKEN)
dataset_CODING = load_dataset(DATASET_TO_LOAD)
dataset_CODING
royalListOfCode = {}
issues_path = 'dataset'
tokenizer = AutoTokenizer.from_pretrained("DeepESP/gpt2-spanish-medium")
DATASET_SOURCE_ID = '7'
#Read current path
path = Path(__file__).parent.absolute()
def readCsvFIle():
"""
"""
cantemistDstDict = {
'raw_text': '',
'topic': '',
'speciallity': '',
'raw_text_type': 'question',
'topic_type': '',
'source': DATASET_SOURCE_ID,
'country': '',
'document_id': ''
}
totalOfTokens = 0
corpusToLoad = []
countCopySeveralDocument = 0
counteOriginalDocument = 0
idFile = 0
path = Path(__file__).parent.absolute()
both_diagnostic_tratamient = open_text = type_tratamient = type_diagnostic = both_diagnostic_tratamient = 0
df = pd.read_csv(f"{str(path)+ os.sep + CSV_FILE_NAME}",encoding='utf8')
df = df.replace({np.nan: None})
print(df.columns)
for i in range(len(df)):
counteOriginalDocument += 1
newCorpusRow = cantemistDstDict.copy()
idFile += 1
text = df.loc[i, 'Abstract']
newCorpusRow['speciallity'] = df.loc[i, 'Enfermedad'] if df.loc[i, 'Enfermedad'] != None else ''
listOfTokens = tokenizer.tokenize(text)
currentSizeOfTokens = len(listOfTokens)
totalOfTokens += currentSizeOfTokens
newCorpusRow['raw_text'] = text
newCorpusRow['document_id'] = str(idFile)
if df.loc[i, 'Tratamiento'] == None and df.loc[i, 'Diagnostico'] == None:
open_text += 1
newCorpusRow['topic_type'] = 'open_text'
newCorpusRow['raw_text_type'] = 'open_text'
elif df.loc[i, 'Tratamiento'] != None and df.loc[i, 'Diagnostico'] == None:
type_tratamient += 1
newCorpusRow['topic_type'] = 'medical_diagnostic'
newCorpusRow['topic'] = df.loc[i, 'Tratamiento']
elif df.loc[i, 'Tratamiento'] == None and df.loc[i, 'Diagnostico'] != None:
type_diagnostic += 1
newCorpusRow['topic_type'] = 'medical_topic'
newCorpusRow['topic'] = df.loc[i, 'Diagnostico']
elif df.loc[i, 'Tratamiento'] != None and df.loc[i, 'Diagnostico'] != None:
both_diagnostic_tratamient += 1
tratmentCorpusRow = newCorpusRow.copy()
newCorpusRow['topic_type'] = 'medical_diagnostic'
newCorpusRow['topic'] = df.loc[i, 'Diagnostico']
tratmentCorpusRow['topic_type'] = 'medical_topic'
tratmentCorpusRow['topic'] = df.loc[i, 'Tratamiento']
corpusToLoad.append(tratmentCorpusRow)
corpusToLoad.append(newCorpusRow)
#print(df.loc[i, "Abstract"], df.loc[i, "Diagnostico"])
print(" Size with Open Text " + str(open_text))
print(" Size with only tratamient " + str(type_tratamient))
print(" Size with only diagnosti " + str(type_diagnostic))
print(" Size with both tratamient and diagnosti " + str(both_diagnostic_tratamient))
dfToHub = pd.DataFrame.from_records(corpusToLoad)
if os.path.exists(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl"):
os.remove(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl")
dfToHub.to_json(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl", orient="records", lines=True)
print(
f"Downloaded all the issues for {DATASET_TO_LOAD}! Dataset stored at {issues_path}/spanish_medical_llms.jsonl"
)
print(' On dataset there are as document ', counteOriginalDocument)
print(' On dataset there are as copy document ', countCopySeveralDocument)
print(' On dataset there are as size of Tokens ', totalOfTokens)
file = Path(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl") # or Path('./doc.txt')
size = file.stat().st_size
print ('File size on Kilobytes (kB)', size >> 10) # 5242880 kilobytes (kB)
print ('File size on Megabytes (MB)', size >> 20 ) # 5120 megabytes (MB)
print ('File size on Gigabytes (GB)', size >> 30 ) # 5 gigabytes (GB)
##Update local dataset with cloud dataset
local_spanish_dataset = load_dataset("json", data_files=f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl", split="train")
print ('<== Local Dataset ==> ')
print(local_spanish_dataset)
try:
spanish_dataset = load_dataset(DATASET_TO_UPDATE, split="train")
spanish_dataset = concatenate_datasets([spanish_dataset, local_spanish_dataset])
print('<--- Copy files --->')
except Exception:
spanish_dataset = local_spanish_dataset
spanish_dataset.push_to_hub(DATASET_TO_UPDATE)
print(spanish_dataset)
readCsvFIle()