inoid commited on
Commit
39f9089
1 Parent(s): d3b652c

Upload using_dataset.py

Browse files
Files changed (1) hide show
  1. medlineplus_spanish/using_dataset.py +175 -0
medlineplus_spanish/using_dataset.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """using_dataset_hugginface.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1soGxkZu4antYbYG23GioJ6zoSt_GhSNT
8
+ """
9
+
10
+ """**Hugginface loggin for push on Hub**"""
11
+ ###
12
+ #
13
+ # Used bibliografy:
14
+ # https://huggingface.co/learn/nlp-course/chapter5/5
15
+ #
16
+ ###
17
+
18
+ import os
19
+ import time
20
+ import math
21
+ from huggingface_hub import login
22
+ from datasets import load_dataset, concatenate_datasets
23
+ from functools import reduce
24
+ from pathlib import Path
25
+ import pandas as pd
26
+ import numpy as np
27
+
28
+
29
+ # Load model directly
30
+ from transformers import AutoTokenizer
31
+
32
+ HF_TOKEN = ''
33
+ DATASET_TO_LOAD = 'spanish_health_output.json'
34
+ DATASET_TO_UPDATE = 'somosnlp/spanish_medica_llm'
35
+ BAD_CHAIN = [
36
+ 'es como usted puede verificarlo',
37
+ 'Un sitio oficial del Gobierno de Estados Unidos',
38
+ 'lo en sitios web oficiales y seguros.',
39
+ 'forma segura a un sitio web .gov. Comparta informaci',
40
+ 'Gobierno de Estados Unidos.',
41
+ 'pertenece a una organizaci',
42
+ '(\r\n \n ) o ',
43
+ 'Un sitio\r\n'
44
+ ]
45
+ #Loggin to Huggin Face
46
+ login(token = HF_TOKEN)
47
+
48
+
49
+
50
+ royalListOfCode = {}
51
+ issues_path = 'dataset'
52
+ tokenizer = AutoTokenizer.from_pretrained("DeepESP/gpt2-spanish-medium")
53
+ DATASET_SOURCE_ID = '2'
54
+ #Read current path
55
+ path = Path(__file__).parent.absolute()
56
+
57
+ dataset_CODING = pd.read_json(str(path) + os.sep + DATASET_TO_LOAD, encoding="utf8")
58
+
59
+ # raw_text: Texto asociado al documento, pregunta, caso clínico u otro tipo de información.
60
+
61
+ # topic: (puede ser healthcare_treatment, healthcare_diagnosis, tema, respuesta a pregunta, o estar vacío p.ej en el texto abierto)
62
+
63
+ # speciality: (especialidad médica a la que se relaciona el raw_text p.ej: cardiología, cirugía, otros)
64
+
65
+ # raw_text_type: (puede ser caso clínico, open_text, question)
66
+
67
+ # topic_type: (puede ser medical_topic, medical_diagnostic,answer,natural_medicine_topic, other, o vacio)
68
+
69
+ # source: Identificador de la fuente asociada al documento que aparece en el README y descripción del dataset.
70
+
71
+ # country: Identificador del país de procedencia de la fuente (p.ej.; ch, es) usando el estándar ISO 3166-1 alfa-2 (Códigos de país de dos letras.).
72
+ cantemistDstDict = {
73
+ 'raw_text': '',
74
+ 'topic': '',
75
+ 'speciallity': '',
76
+ 'raw_text_type': 'open_text',
77
+ 'topic_type': 'other',
78
+ 'source': DATASET_SOURCE_ID,
79
+ 'country': 'es',
80
+ 'document_id': ''
81
+ }
82
+
83
+ def getExtraTexInformation(item, data_top_columname):
84
+ optionalTag = ["Healthtopics Name", "titles", "subtitles", "paragraphs"]
85
+ text = ""
86
+
87
+ for key in data_top_columname:
88
+ if key not in optionalTag:
89
+ if not np.isnan(item[key]) and len(item[key]) > 1:
90
+ text += str(item[key]) + '\n'
91
+
92
+ return text
93
+
94
+ totalOfTokens = 0
95
+ corpusToLoad = []
96
+ countCopySeveralDocument = 0
97
+ counteOriginalDocument = 0
98
+ data_top_columname = dataset_CODING.head()
99
+
100
+ def verifyRepetelyChain(paragraph):
101
+ return '' if len([ x for x in BAD_CHAIN if paragraph.find(x) != -1]) > 0 else paragraph
102
+
103
+
104
+ for index, item in dataset_CODING.iterrows():
105
+
106
+ if len(item['paragraphs']) > 1:
107
+ text = reduce(lambda a, b: verifyRepetelyChain(a) + "\n "+ verifyRepetelyChain(b), item['paragraphs'], "")
108
+ else:
109
+ text = getExtraTexInformation(item, data_top_columname)
110
+ #Find topic or diagnosti clasification about the text
111
+
112
+ counteOriginalDocument += 1
113
+ newCorpusRow = cantemistDstDict.copy()
114
+
115
+ #print('Current text has ', currentSizeOfTokens)
116
+ #print('Total of tokens is ', totalOfTokens)
117
+
118
+ listOfTokens = []
119
+ try:
120
+ listOfTokens = tokenizer.tokenize(text)
121
+ except Exception:
122
+ raise Exception('Error')
123
+
124
+ currentSizeOfTokens = len(listOfTokens)
125
+ totalOfTokens += currentSizeOfTokens
126
+
127
+ newCorpusRow['topic'] = item['Healthtopics Name'] if item['Healthtopics Name'] else reduce(lambda a, b: a + "\n "+ b, item['titles'], "")
128
+ newCorpusRow['raw_text'] = text
129
+ idFile = counteOriginalDocument
130
+ newCorpusRow['document_id'] = str(idFile)
131
+ corpusToLoad.append(newCorpusRow)
132
+
133
+
134
+ df = pd.DataFrame.from_records(corpusToLoad)
135
+
136
+ if os.path.exists(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl"):
137
+ os.remove(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl")
138
+
139
+ df.to_json(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl", orient="records", lines=True)
140
+ print(
141
+ f"Downloaded all the issues for {DATASET_TO_LOAD}! Dataset stored at {issues_path}/spanish_medical_llms.jsonl"
142
+ )
143
+
144
+ print(' On dataset there are as document ', counteOriginalDocument)
145
+ print(' On dataset there are as copy document ', countCopySeveralDocument)
146
+ print(' On dataset there are as size of Tokens ', totalOfTokens)
147
+ file = Path(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl") # or Path('./doc.txt')
148
+ size = file.stat().st_size
149
+ print ('File size on Kilobytes (kB)', size >> 10) # 5242880 kilobytes (kB)
150
+ print ('File size on Megabytes (MB)', size >> 20 ) # 5120 megabytes (MB)
151
+ print ('File size on Gigabytes (GB)', size >> 30 ) # 5 gigabytes (GB)
152
+
153
+ #Once the issues are downloaded we can load them locally using our
154
+ local_spanish_dataset = load_dataset("json", data_files=f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl", split="train")
155
+
156
+ ##Update local dataset with cloud dataset
157
+ try:
158
+ spanish_dataset = load_dataset(DATASET_TO_UPDATE, split="train")
159
+ new_spanish_dataset = concatenate_datasets([spanish_dataset, local_spanish_dataset])
160
+ except Exception:
161
+ print ('<== Exception ==> ')
162
+ raise Exception
163
+ #new_spanish_dataset = local_spanish_dataset
164
+
165
+ new_spanish_dataset.push_to_hub(DATASET_TO_UPDATE)
166
+
167
+ print(new_spanish_dataset)
168
+
169
+ # Augmenting the dataset
170
+
171
+ #Importan if exist element on DATASET_TO_UPDATE we must to update element
172
+ # in list, and review if the are repeted elements
173
+
174
+ #spanish_dataset.push_to_hub(DATASET_TO_UPDATE)
175
+