File size: 7,828 Bytes
9ef89a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# Instruction code heavily inspired by Andreas Köpf
# source: https://github.com/andreaskoepf/epfl-megatron/tree/local_changes/
"""Processing data for instruction tuning.
Example:
python instruct/preprocess_instruct_data.py --input=/pure-mlo-scratch/alhernan/data/medmc/medmc-v1.jsonl \
    --output_prefix=/pure-mlo-scratch/alhernan/data/medmc/medmc-v1 \
    --tokenizer_type=SentencePieceTokenizer \
    --vocab_file=/pure-mlo-scratch/llama/tokenizer.model \
    --chunk_size=32 --workers=32 \
    --vocab_extra_ids_list "[bib_ref],[/bib_ref],[fig_ref],[/fig_ref],[bib],[/bib],[fig],[/fig],[table],[/table],[formula],[/formula],<|im_start|>,<|im_end|>" \
    --question_key=input \
    --answer_key=output \
    --system_key=instruction
"""

import sys
import json
import time
import itertools
from pathlib import Path
from typing import Optional
from multiprocessing import Pool
from argparse import ArgumentParser, Namespace

import torch

sys.path.append(str(Path(__file__).parent.parent.absolute()))
from megatron.tokenizer import build_tokenizer
from megatron.tokenizer.tokenizer import AbstractTokenizer
from megatron.data.indexed_dataset import make_builder
from megatron.data.instruction_dataset import Role


class Encoder(object):
    tokenizer: Optional[AbstractTokenizer] = None

    def __init__(self, args: Namespace):
        self.args = args

    def initializer(self):
        Encoder.tokenizer = build_tokenizer(self.args)

    def encode(self, line: str) -> tuple[int, list[int], list[int]]:
        # get data
        assert Encoder.tokenizer is not None
        data = json.loads(line)
        question = data[self.args.question_key]
        answer = data[self.args.answer_key]
        system = None if self.args.system_key is None else data[self.args.system_key]

        # now format messages
        if system is not None:
            system = format_message(system, "system")
        question = format_message(question, "question")
        answer = format_message(answer, "answer")

        # tokenize and get roles
        tokens = []
        roles = []
        if system is not None:
            system = Encoder.tokenizer.tokenize(system)
            tokens += system
            roles += [Role.system.value]*len(system)
        question = Encoder.tokenizer.tokenize(question)
        tokens += question
        roles += [Role.prompter.value]*len(question)
        answer = Encoder.tokenizer.tokenize(answer)
        tokens += answer
        roles += [Role.assistant.value]*len(answer)
        return len(line), tokens, roles

    @property
    def special_tokens(self) -> dict:
        return self.tokenizer._special_tokens


class DatasetWriter:
    def __init__(self, prefix: str, vocab_size: int, dataset_impl: str = "mmap",
                 feature: str = "text"):
        self.vocab_size = vocab_size
        self.dataset_impl = dataset_impl
        self.bin_fname = f"{prefix}-{feature}.bin"
        self.idx_fname = f"{prefix}-{feature}.idx"
        self.builder = None

    def add_item(self, tokens: list[int]):
        self.builder.add_item(torch.IntTensor(tokens))

    def __enter__(self):
        self.builder = make_builder(self.bin_fname, impl=self.dataset_impl,
                                    vocab_size=self.vocab_size)
        return self

    def __exit__(self, *_):
        self.builder.finalize(self.idx_fname)
        self.builder = None


def format_message(message: str, role: str) -> str:
    return f"<|im_start|>{role}\n{message}<|im_end|>\n"


def get_args():
    parser = ArgumentParser()
    group = parser.add_argument_group(title='input data')
    group.add_argument('--input', type=str, nargs="+",
                       help='Path(s) to input JSON file(s)')
    group.add_argument('--system_key',
                       help='key to extract system info from json (optional)')
    group.add_argument('--question_key', default='input',
                       help='key to extract questions from json')
    group.add_argument('--answer_key', default='output',
                       help='key to extract answers from json')

    group = parser.add_argument_group(title='tokenizer')
    group.add_argument('--tokenizer_type', type=str, required=True,
                       choices=['BertWordPieceLowerCase','BertWordPieceCase',
                                'GPT2BPETokenizer', 'SentencePieceTokenizer', 'FalconTokenizer'],
                       help='What type of tokenizer to use.')
    group.add_argument('--vocab_file', type=str, default=None,
                       help='Path to the vocab file')
    group.add_argument('--merge_file', type=str, default=None,
                       help='Path to the BPE merge file (if necessary).')
    group.add_argument('--lang', type=str, default='english',
                       help='Language to use for NLTK-powered sentence splitting.')

    group = parser.add_argument_group(title='output data')
    group.add_argument('--output_prefix', type=Path, required=True,
                       help='Path to binary output file without suffix')
    group.add_argument('--dataset_impl', type=str, default='mmap',
                       choices=['lazy', 'cached', 'mmap'])

    group = parser.add_argument_group(title='runtime')
    group.add_argument('--workers', type=int, required=True,
                       help='Number of worker processes to launch')
    group.add_argument('--chunk_size', type=int, required=True,
                       help='Chunk size assigned to each worker process')
    group.add_argument('--log_interval', type=int, default=100,
                       help='Interval between progress updates')
    group.add_argument('--vocab_extra_ids', type=int, default=0)
    group.add_argument('--vocab_extra_ids_list', type=str, default=None,
                       help='comma separated list of special vocab ids to add to the tokenizer')
    group.add_argument("--no_new_tokens", action="store_false", dest="new_tokens",
                       help=("Whether to add special tokens (e.g. CLS, MASK, etc) "
                             "in the sentencepiece tokenizer or not"))
    args = parser.parse_args()
    args.keep_empty = False

    if args.tokenizer_type.lower().startswith('bert'):
        if not args.split_sentences:
            print("Bert tokenizer detected, are you sure you don't want to split sentences?")

    # some default/dummy values for the tokenizer
    args.rank = 0
    args.make_vocab_size_divisible_by = 128
    args.tensor_model_parallel_size = 1
    return args


def main():
    args = get_args()
    startup_start = time.time()

    encoder = Encoder(args)
    vocab_size = build_tokenizer(args).vocab_size
    fs = map(open, args.input)
    with Pool(args.workers, initializer=encoder.initializer) as pool, \
            DatasetWriter(args.output_prefix, vocab_size, args.dataset_impl,
                          "text") as token_writer, \
            DatasetWriter(args.output_prefix, 16, args.dataset_impl,
                          "role") as role_writer:

        f = itertools.chain(*fs)
        docs = pool.imap(encoder.encode, f, args.chunk_size)
        startup_end = time.time()
        proc_start = time.time()
        total_bytes_processed = 0
        print("Time to startup:", startup_end - startup_start)

        for i, (size, tokens, roles) in enumerate(docs, start=1):
            total_bytes_processed += size
            token_writer.add_item(tokens)
            role_writer.add_item(roles)

            if i % args.log_interval == 0:
                elapsed = time.time() - proc_start
                mbs = total_bytes_processed/1024/1024/elapsed
                print(f"Processed {i} documents ({i/elapsed} docs/s, {mbs} MB/s).")
        print("Done! Now finalizing.")

    for f in fs:
        f.close()


if __name__ == '__main__':
    main()